期刊文献+

基于数据重构的自适应间隔游程压缩算法

Adaptive Interval Run-Length Compression Algorithm Based on Data Reconstruction
下载PDF
导出
摘要 武器系统试飞测试中,需对表征武器特性的脉冲信号进行测量,由于该脉冲宽度很窄,要求其信号采样率大于20 MHz,因此一个试飞架次可产生8000 G的数据量。为了满足如此大数据的传输存储要求,设计了基于数据重构的自适应间隔游程压缩算法。该算法采用阈值滤波技术和数据重组技术,实现了采样数据的实时拆分与重构,提高了武器系统脉冲数据的可压缩性,设计了自适应游程长度编码协议,实现了数据压缩长度的动态调整,提高了数据的压缩效率。试验表明:该算法能够完成武器脉冲信号的压缩,压缩数据可达2.3 G,该算法已经成功应用于试飞测试系统中,满足了武器系统试飞数据采集与压缩的要求。 In the test flight test of weapon system,it is necessary to measure the pulse signal characterizing the characteristics of the weapon.Because the pulse width is very narrow and the signal sampling rate is required to be greater than 20 MHz,a flight test flight can generate 8000 G of data.In order to meet the transmission and storage requirements of such large data,an adaptive interval run-length compression algorithm based on data reconstruction was designed.The algorithm first used threshold filtering technology and data reorganization technology to achieve real-time splitting and reconstruction of sampled data,and improved the compressibility of weapon system pulse data.At the same time,an adaptive run length encoding protocol was designed to realize the dynamic adjustment of the data compression length,which greatly improves the data compression efficiency.Experiments show that the algorithm can complete the compression of weapon pulse signals,and its compression rate can reach 2.3 G,and the algorithm has been successfully applied to the test flight test system,which meets the requirements of weapon system test flight data collection and compression.
作者 王宽 石冯磊 宫海波 WANG Kuan;SHI Fenglei;GONG Haibo(Chinese Flight Test Establishment, Xi’an 710089, China)
出处 《兵器装备工程学报》 CAS CSCD 北大核心 2021年第1期98-102,共5页 Journal of Ordnance Equipment Engineering
基金 军工科研院所稳定支持项目(WD-2019-2-2)。
关键词 数据重构 阈值滤波 自适应间隔 武器脉冲 游程压缩 data reconstruction threshold filtering adaptive interval weapon pulse run-length compression
  • 相关文献

参考文献9

二级参考文献67

  • 1周璧华,陈 彬,高 成.现代战争面临的高功率电磁环境分析[J].微波学报,2002,18(1):88-92. 被引量:52
  • 2桑爱军,杨树媛,赵欣.基于多维矢量矩阵离散余弦变换的熵编码[J].吉林大学学报(工学版),2011,41(S1):319-324. 被引量:3
  • 3潘德炉,王迪峰.我国海洋光学遥感应用科学研究的新进展[J].地球科学进展,2004,19(4):506-512. 被引量:28
  • 4刘治宇,林茂六.基于功率互补对的树形结构混合滤波器组[J].北京航空航天大学学报,2005,31(11):1217-1221. 被引量:2
  • 5芦亚亚,丁维龙,古辉.由行程编码改进的一种通用性压缩算法[J].浙江工业大学学报,2007,35(1):60-64. 被引量:9
  • 6Khanna V, Gupta P, Hwang C J. Finding connected components in digital images [ C ]//Henry Selvaraj. International Conference on Information Technology. Las Vegas: IEEE ,2005:652-656.
  • 7Suzuki K, Horiba I, Sugie N, Linear-time connected-component labeling based on sequential local operations [ J ]. Computer Vi- sion and Image Understanding,2003,89( 1 ):1-23.
  • 8Suzuki K , Horiba l,Sugie N. Fast connected component labeling based on sequential local operations in the course of forward ras- ter scan followed by backward raster scan [ C ]//Bob Werner. 15th International Conference on Pattern Recognition. Barcelona: IEEE ,2000:434-437.
  • 9Ito Y,Nakano K. Optimized component labeling algorithm for u- sing in medium sized FPGAs [ C ]//John Hine. Ninth Interna- tional Conference on Parallel and Distributed Computing. Dune- din:IEEE.2008:171-176.
  • 10Ma Ni. Bailey I) G, Johnston C 3'. Optimised single pass connect- ed components analysis[ C ]//Tarek Ghazawi. International Con- ference on Field-Programmable Technology. Taipei: IEEE, 2008 : 185-192.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部