期刊文献+

2μm波段7-cell空芯光子带隙光纤的特性研究 被引量:4

Research on Characteristics of 2μm band 7-cell Hollow Core Photonic Bandgap Fiber
下载PDF
导出
摘要 扩大传输容量已然成为现代光通信技术发展的首要任务。2μm波段属于人眼波段,并具有大气通信窗口,是未来光通信系统亟待开发的领域。软玻璃材料相比于石英玻璃,具有更宽的透光范围,并且可扩展到中红外波段,恰好配合2μm波段光通信系统。空芯光子带隙光纤(hollow core photonic bandgap fiber,HC-PBGF)由于光纤带隙的存在,提供了独一无二的导光模式。HC-PBGF具备灵活的光纤结构、较低的损耗,可控的色散特性,是非常适合光通信的传输媒介。设计了一种7-cell HC-PBGF,对该光纤的色散、模场面积、限制损耗和弯曲损耗等特性进行仿真分析。 Expanding transmission capacity has become the primary task for the development of modern optical communication technologies. The 2 μm band belongs to the human eye band and has an atmospheric communication window, which is an area in which optical communication systems need to be developed in the future. Compared with quartz glass, soft glass material has a wider light transmission range and can be extended to the mid-infrared band, which is suitable for the 2 μm band optical communication system. Hollow core photonic bandgap Fiber(HC-PBGF) provides a unique light guide mode due to the existence of fiber bandgap. HC-PBGF has a flexible fiber structure, low loss and controllable dispersion characteristics. It is a very suitable transmission medium for optical communication. A 7-cell HC-PBGF is designed, and the characteristics of dispersion, mode field area, limiting loss and bending loss of the fiber are simulated and analyzed.
作者 张亚奇 刘硕 白振旭 ZHANG Ya-qi;LIU Shuo;BAI Zhen-xu(Advanced Laser Technology Research Institute,School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《光电技术应用》 2021年第1期34-38,63,共6页 Electro-Optic Technology Application
基金 国家自然科学基金项目(61805067) 河北省自然科学基金(A2019202257) 河北省高等学校科学技术研究项目(BJ2018047)。
关键词 空芯光子带隙光纤 零色散点 低损耗 弯曲损耗 hollow core photonic bandgap fiber zero dispersion point low loss bending loss
  • 相关文献

参考文献2

二级参考文献20

  • 1Cregan R F, Mangan B J, Knight J C, et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539.
  • 2Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: Technology and applications[J]. Nanophotonics, 2013, 2(5-6): 315-340.
  • 3Kim H K, Digonnet M J F, Kino G S. Air-core photonic-bandgap fiber-optic gyroscope[J]. J Lightwave Technol, 2006, 24(8): 3169-5174.
  • 4Digonnet M, Blin S, Kim H K, et al.. Sensitivity and stability of an air-core fibre-optic gyroscope[J]. Measurement Science & Technology, 2007, 18(10): 3089-3097.
  • 5Blin S, Kim H K, Digonnet M J F, et al.. Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber[J]. J Lightwave Technol, 2007, 25(3): 861-865.
  • 6Lloyd S W, Dangui V, Digonnet M J, et al.. Measurement of reduced backscattering noise in laser-driven fiber optic gyroscopes[J]. Opt Lett, 2010, 55(2): 121-123.
  • 7Xu X, Zhang Z, Zhang Z, et al.. Investigation of residual core ellipticity induced nonreciprocity in air-core photonic bandgap fiber optical gyroscope[J]. Opt Express, 2014, 22(22): 27228.
  • 8Saitoh K, Koshiba M. Confinement losses in air-guiding photonic bandgap fibers[J]. IEEE Photonic Technol Lett, 2003, 15(2): 236-238.
  • 9Roberts P J, Couny F, Sabert H, et al.. Ultimate low loss of hollow-core photonic crystal fibres[J]. Opt Express, 2005, 13(1): 236-244.
  • 10West J, Smith C, Borrelli N, et al.. Surface modes in air-core photonic band-gap fibers[J]. Opt Express, 2004, 12(8): 1485-1496.

共引文献17

同被引文献23

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部