期刊文献+

基于GADF-CNN的滚动轴承故障诊断方法 被引量:35

Fault diagnosis method of rolling bearing based on GADF-CNN
下载PDF
导出
摘要 针对一维信号作为卷积神经网络输入时无法充分利用数据间的相关信息的问题,提出GADF-CNN的轴承故障诊断模型。利用格拉姆角差域(GADF)对采集到的振动信号进行编码,可以很容易地进行角度透视,从而识别出不同时间间隔内的时间相关性并生产相应特征图,之后将其输入卷积神经网络(CNN)自适应的完成滚动轴承故障特征的提取与分类。为了验证模型性能,采用凯斯西储大学轴承数据集进行轴承故障诊断分析,同时引入常见神经网络作为对比,检验不同模型的分类性能。结果表明,相较于其他图像编码方式与神经网络,该模型在载荷变化以及噪声污染时,仍保持了良好的诊断性能。 Aiming at the problem of relevant information between data being not able to be fully utilized during one-dimensional signals taken as input of convolutional neural network(CNN),a bearing fault diagnosis model based on GADF-CNN was proposed.Using Gram angle difference field(GADF)to encode the collected vibration signals,it was easy to perform angle perspective,identify the time correlation in different time intervals and produce the corresponding feature maps.Then,feature maps were input into the convolutional neural network(CNN)to adaptively complete extraction and classification of rolling bearing fault features.In order to verify the performance of the model,Case Western Reserve University,USA bearing data set was used to do bearing fault diagnosis analysis,and a common neural network was introduced to contrastively test the classification performance of different models.The results showed that compared with other image coding methods and neural networks,the proposed model still maintains good diagnostic performance during load variation and noise pollution.
作者 仝钰 庞新宇 魏子涵 TONG Yu;PANG Xinyu;WEI Zihan(College of Mechanical and Transport Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第5期247-253,260,共8页 Journal of Vibration and Shock
基金 国家自然科学基金(51805352) 山西省面上自然基金项目(201901D111062)。
关键词 轴承故障诊断 深度学习 格拉姆角差域 卷积神经网络 bearing fault diagnosis deep learning Gram angular difference field(GADF) convolutional neural network(CNN)
  • 相关文献

参考文献5

二级参考文献56

  • 1杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(2):12-15. 被引量:47
  • 2罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 3程军圣,于德介,杨宇.基于EMD和SVM的滚动轴承故障诊断方法[J].航空动力学报,2006,21(3):575-580. 被引量:32
  • 4何正嘉,袁静,訾艳阳.机械故障诊断的内积变换原理与应用[M].北京:科学出版社,2012: 47-60.
  • 5Bayram I,Selesnick I W. On the dual-tree complex wavelet packet and m-band transt'orms[J]. IEEE Transactions on Signal Processing, 2008,56 (6);2298-2310.
  • 6KONG Fansen, CHEN Ruheng. A combined method for triplex pump fault diagnosis based on wavelet transform, fuzzy logic and neuro-networks [J]. Mechanical Systems and Signal Processing, 2004,18 ( 1 ) : 16 1-1 68.
  • 7Samanta B. Artificial neural networks and genetic algo- rithms for gear fault detection[J]. Mechanical Systems and Signal Processing,2004,18(5) : 1273-1282.
  • 8Vapnik V N. Statistical learning theory[M]. New York= Springer, 1998.
  • 9Kingsbury N G. The dual tree complex wavelet transform: a new technique for shift invariance and directional filters [J]. Digital Signal Processing Workshop, 1998,98 (1) :2-5.
  • 10Selesnick I W, Baraniuk R G, Kingsbury N G. The dual tree complex wavelet transform[J]. Digital Signal Process ing Magazine, 2005,22 (6) : 123-151.

共引文献422

同被引文献292

引证文献35

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部