期刊文献+

融合字典学习的小样本人脸鉴别

Small Sample Face Recognition Based on Fusion Dictionary Learning
下载PDF
导出
摘要 基于稀疏表示的人脸鉴别方法通过提高字典的判别力来提高识别准确率,本文针对小样本训练,提出一种新的融合字典学习方法.首先利用Fisher判别准则及LBP金字塔进行数据预处理;其次提出新的融合字典学习模型,该模型由公共字典、类别特色字典及扰动字典三部分构成,分别提取数据共性、不同类别数据的特殊性以及异常情况下的数据扰动性;最后根据融合字典模型提出一种新的分类器,并在AR、YALE、CMU-PIE、LFW人脸数据库进行实验,结果表明本文算法具有更高的识别率和有效性. Face recognition based on sparse representation improves recognition accuracy by improving the discriminative power of dictionaries.This paper proposes a fusion dictionary learning algorithm.Firstly,Fisher criterion and LBP pyramid are used to preprocess data.Then,based on the features of the data,a fusion dictionary learning model is proposed to comprehensively study the common dictionary,class-specific dictionary,and perturbation dictionary to extract the commonness between the data,the particularity of the different types of data,and the data perturbation under abnormal conditions.Finally,a new classifier is proposed based on the model,and experiments are performed on face databases such as AR,YALE,CMU-PIE,LFW.The results show that this algorithm has higher recognition rate and effectiveness.
作者 狄岚 矫慧文 梁久祯 DI Lan;JIAO Hui-wen;LIANG Jiu-zhen(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi 214122,China;Key Laboratory of Ministry of Public Security for Road Traffic Safety,Wuxi 214151,China;School of Information Science and Engineering,Changzhou University,Changzhou 213164,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第1期154-160,共7页 Journal of Chinese Computer Systems
基金 江苏省研究生科研与实践创新计划项目(KYCX19_1895)资助 道路交通安全公安部重点实验室开放课题基金项目(2020ZDSYSKFKT03-2)资助。
关键词 融合字典学习 LBP金字塔 FISHER准则 小样本 fusion dictionary learning LBP pyramid Fisher criterion small sample
  • 相关文献

参考文献7

二级参考文献39

  • 1温津伟,罗四维,赵嘉莉,黄华.通过创建虚拟样本的小样本人脸识别统计学习方法[J].计算机研究与发展,2002,39(7):814-818. 被引量:9
  • 2Yang M H, Kriegman D, Ahuia N. Detecting {aces in images:A survey. INEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1) :34-58.
  • 3Turk M,Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3 (1) : 71-86.
  • 4Kirby M, SIrovich L. Application of the Karhunen-Loeve procedure for the characteriza- tion of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1) : 1024108.
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) ..711-720.
  • 6Yang J,Yang J Y. From image vector to matrix: A straightforward image projection technique- IMPCA vs. PCA. Pattern Recognition, 2002, 35 (9) :1997-1999.
  • 7Yang J, Zhang D, Frangi A F, et al. Two- dimensional PCA:A new approach to face repre- sentation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1) :131-137.
  • 8Poggio T, Vetter T. Recognition and structure from one 2D model view: Observations on prototypes, object classes, and symmetries. Technical Report. A. I. Memos No. 1347, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1992.
  • 9Lu J W,Tan Y P,Wang G. Discriminative multi- manifold analysis for face recognition from a single training sample per person. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1) :39- 51.
  • 10薛雨丽,毛峡,郭叶,吕善伟.人机交互中的人脸表情识别研究进展[J].中国图象图形学报,2009,14(5):764-772. 被引量:49

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部