期刊文献+

基于深度学习的多STBC盲识别算法 被引量:3

Blind recognition algorithm for multi-STBC based on deep learning
下载PDF
导出
摘要 针对空时分组码(space-time block code,STBC)识别中多种编码类型难区分的问题,提出了一种基于卷积神经网络的STBC盲识别算法。该算法首先将接收信号采用自相关函数的频域预处理,输入到卷积神经网络中对信号特征进行提取,全连接层对特征进行映射,实现对6种STBC类型的识别。仿真实验结果表明,在无信道和噪声等先验信息的条件下,所提算法能够有效区分3种相似度高的STBC3码,且将STBC可识别的编码类型由目前的4种扩充到6种,识别准确率能达到96%。该方法的复杂度较低,不需要利用大量样本数据,实时性高,具有较好的工程应用价值。 To solve the problem that different coding types are difficult to distinguish in space-time block code(STBC)recognition,a blind algorithm is proposed for STBC recognition based on convolutional neural network.In this algorithm,the received signal is preprocessed in frequency domain by autocorrelation function,input into the convolutional neural network to extract the signal features,and the features are mapped at the full connection layer to realize the recognition of six STBC types.Simulation experiment results show that the proposed algorithm can effectively distinguish three STBC3 codes of high similarity in the absence of channel and noise under the condition of a priori information,and the recognizable code type of STBC can be expanded from the current four to six,identification accuracy can reach 96%.The complexity of this method is low,and does not need to use a large number of sample data,Which has high real-time performance and good engineering application value.
作者 于柯远 张立民 闫文君 金堃 YU Keyuan;ZHANG Limin;YAN Wenjun;JIN Kun(Institute of Information Fusion,Naval Aviation University,Yantai 264001,China;School of Basis of Aviation,Naval Aviation University,Yantai 264001,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2021年第4期1110-1118,共9页 Systems Engineering and Electronics
基金 国家自然科学基金重大研究计划(91538201) 泰山学者工程专项(201511020)资助课题。
关键词 信号盲识别 空时分组码 卷积神经网络 数据预处理 自相关函数 b lind signal recognition space-time block code convolutional neural network data preprocessing au tocorrelation function
  • 相关文献

参考文献7

二级参考文献63

  • 1沙毅,王彬,李娜,王光兴.空时分组码在频率选择性衰落信道中的性能[J].东北大学学报(自然科学版),2007,28(8):1113-1117. 被引量:2
  • 2Choqueuse V, Marazin M, Coliin L, et al.. Blind recognition of linear space time block codes: a likelihood-based approach [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1290-1299.
  • 3Marey M, Dobre O A, and Liao B. Classification of STBC system over frequency-selective channels[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5): 2159-2164.
  • 4Choqueuse V, Yao K, and Collin L. Hierarchical space-time block code recognition using correlation matrices[J]. IEEE Transactions on Wireless Communications, 2008, 7(9): 3526-3534.
  • 5Choqueuse V, Yao K, Collin L, et al.. Blind recognition of linear space time block codes[C]. Proceedings of IEEE International Conference Acoustics, Speech and Signal Processing, Las Vegas, USA, 2008: 2833-2836.
  • 6Marey M and Dobre O A. Blind modulation classification algorithm for single and multiple-antenna systems over frequency-selective channels[J]. IEEE Signal Processing Letters, 2014, 21(9): 1098-1102.
  • 7Eldemerdash Y A, Dobre O A, and Liao B J. Blind identification of SM and Alamouti STBC-OFDM signals[J]. IEEE Transactions on Wireless Communications, 2015 14(2): 972-982.
  • 8Shi M, Bar-Ness Y, and Su W. STC and BLAST MIMO modulation recognition[C]. IEEE Global Telecommunications Conference, Washington, D.C., USA, 2007: 3034-3039.
  • 9Marey M, Dobre O A, and Inkol R. Classification of space time block codes based on second-order cyclostationarity with transmission impairments[J]. IEEE Transactions on Wireless Communications, 2012, 11(7): 2574-2584.
  • 10DeYoung M, Health R, and Evans B L. Using higher order cyclostationarity to identify space-time block codes ]C]. IEEE Global Telecommunications Conference, New Orleans, USA, 2008: 3370-3374.

共引文献1831

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部