期刊文献+

基于分布式光伏运维的多类型资源调度技术 被引量:4

Multi-type resource scheduling technology based on distributed photovoltaic operation and maintenance
下载PDF
导出
摘要 针对当前分布式光伏运维过程中存在的人工调度方式效率低,成本高的问题,提出了适用于分布式光伏运维的多类型资源调度方法。该方法通过分析分布式光伏运维资源匹配规则,建立了分布式光伏运维资源调度问题模型;为了验证不同算法求解不同场景下该模型的性能,开发了分布式光伏运维资源调度系统,并进行了验证分析,为每种场景选择了最优的调度算法。实验结果表明,所研究的分布式光伏运维资源调度技术,制定调度计划速度快,方案合理,可以减少运维成本,提高服务质量。 To solve the problem of low efficiency and high cost in the process of distributed photovoltaic operation and maintenance,a multi-type resource scheduling method suitable for distributed photovoltaic operation and maintenance was proposed.By analyzing the matching rules of distributed photovoltaic operation and maintenance resources,the distributed photovoltaic operation and maintenance resource scheduling model was established.To verify the performance of different algorithms for solving the model under different scenarios,a distributed photovoltaic operation and maintenance resource scheduling system was developed analyzed,and the optimal scheduling algorithm was selected for each scenario.The distributed photovoltaic operation and maintenance resource scheduling technology studied was fast in scheduling and reasonable in scheme,which could reduce operation and maintenance cost and improve service quality.
作者 高鹏 苏雍贺 靳健 谢祥颖 张长志 陶飞 GAO Peng;SU Yonghe;JIN Jian;XIE Xiangying;ZHANG Changzhi;TAO Fei(School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;School of Government,Beijing Normal University,Beijing 100875,China;Department of the PV Cloud,State Grid Electronic Commerce Co.,Ltd.,Beijing 100053,China;Power Research Institute,State Grid Tianjin Electronic Power Company,Tianjin 300384,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2021年第3期787-799,共13页 Computer Integrated Manufacturing Systems
基金 国家重点研发计划资助项目(2018YFB1500800) 国家电网有限公司科技资助项目(SGTJDK00DYJS2000148) 北京市科技重大专项资助项目(Z191100002719004)。
关键词 分布式光伏 维修服务 静态调度 遗传模拟退火算法 粒子群算法 distributed photovoltaic maintenance service static scheduling genetic simulated annealing algorithm particle swarm algorithm
  • 相关文献

参考文献21

二级参考文献242

共引文献377

同被引文献43

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部