期刊文献+

基于递推最小二乘法的SCARA机器人动力学参数辨识研究 被引量:16

Research on Dynamic Parameter Identification of SCARA Robot Based on Recursive Least Squares
下载PDF
导出
摘要 为了提高SCARA机器人在工业场合中的工作精度,对其动力学模型进行分析是有效途径之一。建立机器人拉格朗日动力学方程并进行线性化处理,得到一组关节力矩和待辨识参数的线性表达式。选取有限项傅里叶级数作为激励轨迹模型,并使机器人启停时关节角速度和角加速度为零,确保机器人运行平稳。再将线性表达式中观测矩阵的条件数作为优化指标,并结合MATLAB优化工具箱,获得关节最优激励轨迹系数。最后通过递推最小二乘法获得待辨识参数,并代入关节力矩表达式中,并与实际采集力矩值进行比较,确定两者变化趋势。结果表明:实验能够获得较为理想的效果,经过辨识计算所得关节力矩可用作相关领域的动力学控制。 In order to improve the working accuracy of SCARA robots in industrial settings,it is one of the effective ways to analyze its dynamic model.The robot Lagrangian dynamic equation was established and linearized to obtain a set of linear expressions of the joint torque and parameters to be identified.The finite-term Fourier series was selected as the excitation trajectory model,and the joint angular velocity and angular acceleration were zero when the robot started and stopped to ensure the robot ran smoothly.Then the conditional number of the observation matrix in the linear expression was used as the optimization index,and combined with MATLAB optimization toolbox,the joint optimal excitation trajectory coefficient was obtained.Finally,the parameters to be identified were obtained by recursive least squares method,and substituted into the joint torque expression to compare it with the actual collected torque value to determine the change trend of the two.The results show that through experiment,a better effect can be obtained,and the joint torque calculated through the identification results can be used as a dynamic control in related fields.
作者 李家铮 张禹 赵文川 王富民 LI Jiazheng;ZHANG Yu;ZHAO Wenchuan;WANG Fumin(College of Mechanical Engineering,Shenyang University of Technology,Shenyang Liaoning 110870,China)
出处 《机床与液压》 北大核心 2021年第6期22-26,共5页 Machine Tool & Hydraulics
关键词 SCARA机器人 拉格朗日法 动力学参数辨识 递推最小二乘法 SCARA robot Lagrangian method Dynamic parameter identification Recursive least squares
  • 相关文献

参考文献5

二级参考文献40

  • 1陆金伟,李跃民.SCARA机器人的完整动力学显方程的推导[J].振动.测试与诊断,1995,15(3):23-29. 被引量:6
  • 2刘正士,陈恩伟,干方建.机器人惯性参数辨识的若干方法及进展[J].合肥工业大学学报(自然科学版),2005,28(9):998-1003. 被引量:9
  • 3陈恩伟,刘正士,干方建.机器人末端臂惯性参数辨识的人工神经网络方法[J].中国机械工程,2006,17(3):268-271. 被引量:6
  • 4Wu Jun, Wang Jin-song, You Zheng. An overview of dy- namic parameter identification of robots [ J ]. Robotics and Computer-Integrated Manufacturing, 2010, 26 ( 5 ) : 414-419.
  • 5Brogardh T. Robot control overview:an industrial perspec- tive [ J ]. Modeling Identification and Control, 2009,30 (3) :167-180.
  • 6Qin Z K, Baron L, Birglen L. A new approach to the dy- namic parameter identification of robotic manipulators [J]. Robotica,2010,28 (4) :539-547.
  • 7Swevers J, Verdonck W, Schutter D S. Dynamic model identification for industrial robots [ J ]. IEEE Control Sys- tems Magazine ,2007,27 ( 5 ) :58-71.
  • 8Rosillo N, Valera A, Benimeli F, et al. Real-time solving of dynamic problem in industrial robots [ J ]. Industrial Robot : An International Journal ,2011,38 (2) : 119-129.
  • 9Atkeson C, An C H, Hollerbach J M. Estimation of inertial parameters of manipulator loads and links [ J ]. The Inter- national Journal of Robotics Research, 1986,5 (3) :101- 119.
  • 10Dutkiewicz P, Kozlowski R K, Wroblewski W S. Experimental identification of robot and load dynamics parameters [ C ] //Proceedings of the 2th Conference on Control Applica- tions. Vancouver : IEEE, 1993 : 767-776.

共引文献57

同被引文献188

引证文献16

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部