期刊文献+

基于L21范式的多图正则化非负矩阵分解方法 被引量:2

MULTIPLE GRAPH REGULARIZED NON-NEGATIVE MATRIX FACTORIZATION BASED ON L21 NORM
下载PDF
导出
摘要 针对非负矩阵分解方法对原始数据的单图约束导致的结果未知性大、满足需求单一,以及大多非负矩阵分解方法存在对噪声、离群点较敏感导致的稀疏度和鲁棒性较差等问题,提出基于L21范式的多图正则化非负矩阵分解方法。采用L21范式,提升分解结果的稀疏度和鲁棒性。构建多图约束的算法模型更好地保持数据的流形结构。构建目标函数并给出乘性迭代规则。通过在多个数据库上的实验表明,该方法在识别效果上有明显的提升。 The non-negative matrix factorization method,the single graph constraint of the original data results in large unknowns,satisfying single demand,and most non-negative matrix factorization methods have poor sparsity and robustness against noise and outliers.A multi-graph regularized non-negative matrix factorization method based on the L21 norm is proposed.The L21 norm was used to improve the sparsity and robustness of the decomposition results.We constructed multi-graph constraints to better maintain the manifold structure of the data,and we constructed the objective function and gave a multiplication iteration rule.The experiments on multiple databases show that the proposed method has a significant improvement in recognition performance.
作者 周长宇 姚明海 李劲松 Zhou Changyu;Yao Minghai;Li Jinsong(School of Information Science and Technology,Bohai University,Jinzhou 121001,Liaoning,China)
出处 《计算机应用与软件》 北大核心 2021年第4期271-275,310,共6页 Computer Applications and Software
基金 辽宁省自然科学基金指导计划项目(2019ZD0503)。
关键词 非负矩阵分解 图正则化 特征提取 迭代算法 Non-negative matrix factorization Graph regularization Feature extraction Iterative algorithm
  • 相关文献

参考文献4

二级参考文献25

  • 1Lee D D,Seung H S. Learning the parts of objects by non-negativematrix factorization[J].Nature,1999,(6755):788-791.
  • 2Hoyer P O. Non-negative sparse coding[A].2002.557-565.
  • 3Li S Z,Hou Xin-wen,Zhang Hong-jiang. Learning spatially localized,parts-based representation[A].2001.207-212.
  • 4Liu Wei-xiang,Zheng Nan-ning,Lu Xiao-feng. Nonnegative matrix factorization for visual coding[A].2003.293-296.
  • 5Hoyer P O. Non-negative matrix factorization with sparseness cons-traints[J].Journal of Machine Learning Research,2004,(09):1457-1469.
  • 6Wang Yuan,Jia Yun-de,Hu Chang-bo. Fisher non-negative matrix factorization for learning local features[A].2004.
  • 7Zafeiriou S,Tefas A,Buciu I. Exploiting discriminant information to frontal face verification[J].IEEE Transactions on Neural Networks,2006,(03):683-695.
  • 8Belkin M,Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,(06):1373-1396.doi:10.1162/089976603321780317.
  • 9Cai Deng,He Xiao-fei,Jia Wei-han. Spectral regression:A unified approach for sparse subspace learning[A].2007.
  • 10Cai Dang,He Xiao-fei,Wu Xiao-yun. Non-negative Matrix Factorization on Manifold[A].2008.

共引文献27

同被引文献3

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部