期刊文献+

THE TWO-LEVEL STABILIZED FINITE ELEMENT METHOD BASED ON MULTISCALE ENRICHMENT FOR THE STOKES EIGENVALUE PROBLEM 被引量:2

下载PDF
导出
摘要 In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.
作者 Juan WEN Pengzhan HUANG Ya-Ling HE 文娟;黄鹏展;何雅玲(Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education,School of Energy and Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China;School of Sciences,Xi'an University of Technology,Xi'an 710048,China;College of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2021年第2期381-396,共16页 数学物理学报(B辑英文版)
基金 supported by the National Key R&D Program of China(2018YFB1501001) the NSF of China(11771348) China Postdoctoral Science Foundation(2019M653579)。
  • 相关文献

参考文献1

二级参考文献3

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部