期刊文献+

基于拉普拉斯金字塔生成对抗网络的图像超分辨率重建算法 被引量:5

Image super-resolution reconstruction algorithm based on Laplacian pyramid generative adversarial network
下载PDF
导出
摘要 针对目前的图像超分辨率重建算法中存在的大尺度因子的重建效果较差、不同尺度的图像重建均需要单独训练等问题,提出一种基于拉普拉斯金字塔生成对抗网络(GAN)的图像超分辨率重建算法。算法中的生成器使用金字塔结构实现多尺度的图像重建,从而以渐进上采样的方式降低了大尺度因子的学习难度,并在层与层之间使用密集连接加强特征传播,从而有效避免了梯度弥散问题。算法中使用马尔可夫判别器将输入数据映射为结果矩阵,并在训练的过程中引导生成器关注图像的局部特征,从而丰富了重建图像的细节。实验结果表明:在Set5等基准数据集上分别进行放大2倍、4倍、8倍的图像重建时,所提算法的平均峰值信噪比(PSNR)分别达到了33.97 dB、29.15 dB、25.43 dB,平均结构相似性(SSIM)分别达到了0.924、0.840、0.667,相比用于超分辨率重建的卷积神经网络(SRCNN)、深度拉普拉斯金字塔超分辨率重建网络(LapSRN)、用于超分辨率重建的生成对抗式网络(SRGAN)等其他算法有较大提升,且其重建的图像在主观视觉上保留了更多生动的纹理和小颗粒细节。 Concerning the problems of poor reconstructing performance with large-scale factors and requirement of separate training in image reconstruction with different scales in current image super-resolution reconstruction algorithms,an image super-resolution reconstruction algorithm based on Laplacian pyramid Generative Adversarial Network(GAN)was proposed.The pyramid structure generator of the proposed algorithm was used to realize the multi-scale image reconstruction,so as to reduce the difficulty in learning large-scale factors by progressive up-sampling,and dense connection was used between layers to enhance feature propagation,which effectively avoided the vanishing gradient problem.In the algorithm,Markovian discriminator was used to map the input data into the result matrix,and the generator was guided to pay attention to the local features of the image in the process of training,which enriched the details of the reconstructed images.Experimental results show that,when performing 2-times,4-times and 8-times image reconstruction on Set5 and 29.15 dB,25.43 dB respectively,and the average Structural SIMilarity(SSIM)of the algorithm reaches 0.924,0.840,0.667 respectively,outperforming to those of other algorithms such as Super Resolution Convolutional Neural Network(SRCNN),fast and accurate image Super-Resolution with deep Laplacian pyramid Network(LapSRN)and SuperResolution GAN(SRGAN),and the images reconstructed by the proposed algorithm retain more vivid textures and finegrained details in subjective vision.
作者 段友祥 张含笑 孙歧峰 孙友凯 DUAN Youxiang;ZHANG Hanxiao;SUN Qifeng;SUN Youkai(College of Computer Science and Technology,China University of Petroleum,Qingdao Shandong 266580,China;Geophysical Research Institute of Sinopec Shengli Oilfield Company Limited,Dongying Shandong 257000,China)
出处 《计算机应用》 CSCD 北大核心 2021年第4期1020-1026,共7页 journal of Computer Applications
基金 中央高校基本科研业务费专项资金资助项目(20CX05017A) 中石油重大科技项目(ZD2019-183-006)。
关键词 超分辨率重建 大尺度因子 密集连接 拉普拉斯金字塔 生成对抗网络 super-resolution reconstruction large-scale factor dense connection Laplacian pyramid Generative Adversarial Network(GAN)
  • 相关文献

参考文献4

二级参考文献22

共引文献156

同被引文献40

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部