期刊文献+

基于Mask R-CNN的超声图像中胎儿头围测量方法 被引量:2

Method for Measuring Fetal Head Circumference in Ultrasound Images Based on Mask R-CNN
下载PDF
导出
摘要 胎儿头围是产前超声检查中评价胎儿生长发育最重要的生物特征之一,但手工测量耗时费力且存在操作者的误差。对此,根据超声图像中胎儿头部接近椭圆形状的特征,提出头围测量损失函数。在Mask R-CNN的分割分支后,利用Elli Fit算法对分割掩膜进行椭圆拟合,用Ramanujan公式计算拟合椭圆周长作为头围测量值,将头围真实值和测量值的均方误差作为头围测量损失函数加入原损失函数,使模型训练过程与测量任务紧密相关。对190幅胎儿头部超声图像进行测试,Dice系数为96.89%±1.01%,测量误差为(0.33±1.54) mm,平均处理一幅超声图像的时间为0.33 s。与传统手工测量方法或原模型相比,所提出的方法在速度上提高1.13~16.87 s,在精度上提高0.21~1.68 mm。结果表明,改进的Mask R-CNN可以提高医生测量胎儿头围的效率,能够满足临床需求。 Fetal head circumference is one of the most important biological characteristics in prenatal ultrasound evaluation of fetal growth and development. However,manual measurement is time-consuming and laborconsuming and may have errors by the operator. According to the feature of fetal head close to ellipse shape in ultrasound image,the head circumference measurement loss function was proposed in this paper. After the segmentation branch of Mask R-CNN,ElliFit algorithm was used to fit the ellipse of the segmentation mask.Ramanujan formula was used to calculate the fitting ellipse circumference as the measurement value of the head circumference. The mean square error of the real value of the head circumference and the measurement value was added into the original loss function as head circumference measurement loss function to allow the training process of the model to be closely related to the measurement task. By this way the measurement accuracy and speed was improved. One hundred and ninety ultrasound images of fetal head were tested. Dice’s coefficient was 96. 89% ±1. 01%,and the measurement error was(0. 33±1. 54)mm. The average processing time of one ultrasound image was 0. 33 s. Compared with the traditional manual measurement method or the current machine learning methods,the proposed method improved the speed between 1. 13 seconds and 16. 87 seconds,and improved the accuracy between 0. 21 mm and 1. 68 mm. The results showed that the improved Mask R-CNN increased the efficiency of doctors in measuring fetal head circumference,which met the clinical needs.
作者 李宗桂 张俊华 梅礼晔 Li Zonggui;Zhang Junhua;Mei Liye(School of Information,Yunnan University,Kunming 650500,China)
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第1期12-18,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61841112)。
关键词 超声图像 Mask R-CNN 椭圆拟合 胎儿头围测量 损失函数 ultrasound image Mask R-CNN ellipse fitting fetal head circumference measurement loss function
  • 相关文献

参考文献1

二级参考文献17

  • 1Hanna C W,Youssef A B M.Automated measurements in obstetric ultrasound images[C]// International Conference on Image Processing.Santa Barbara (USA):IEEE Press,1997,3:504-507.
  • 2Lu Wei,Tan Jinglu.Segmentation of ultrasound fetal images[C]// Biological Quality and Precision Agriculture Ⅱ.Boston (USA):SPIE,2000,4203:81-90.
  • 3Lu Wei,Tan Jinglu,Floyd R.Automated fetal head detection and measurement in ultrasound images by iterative randomized Hough transform[J].Ultrasound in Medicine & Biology,2005,31(7):929-936.
  • 4Chalana V,Winter T C 3rd,Cyr D R,et al.Automatic fetal head measurements from sonographic images[J].Academic Radiology,1996,3(8):628-635.
  • 5Pathak S D,Chalana V,Kim Y.Interactive automatic fetal head measurements from ultrasound images using multimedia computer technology[J].Ultrasound in Medicine & Biology,1997,23(5):665-673.
  • 6Pathak S D,Chalana V,Kim Y.Multimedia systems in ultrasound image boundary detection and measurements[C]// Medical Imaging. International Society for Optics and Photonics.[S.l.]:SPIE,1997,3031:397-408.
  • 7Shan B P,Madheswaran M.Extraction of fetal biometrics using class separable shape sensitive approach for gestational age estimation[C]// International Conference on Computer Technology and Development.Kota Kinabalu(Malaysia):IEEE Press,2009,2:376-380.
  • 8Jardim S M G V B,Figueiredo M A T.Segmentation of fetal ultrasound images[J].Ultrasound in Medicine & Biology,2005,31(2):243-250.
  • 9Jardim S M G V B,Figueiredo M A T.Segmentation of fetal ultrasound images[J].Ultrasound in Medicine & Biology,2005,31(2):243-250.
  • 10Ni Dong,Yang Yong,Li Shenli,et al.Learning based automatic head detection and measurement from fetal ultrasound images via prior knowledge and imaging parameters[C]// The 10th International Symposium on Biomedical Imaging (ISBI).[S.l.]:IEEE Press , 2013:772-775.

共引文献6

同被引文献25

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部