期刊文献+

一种水下鱼类动态视觉序列运动目标检测方法 被引量:4

Method for moving object detection of underwater fish using dynamic video sequence
下载PDF
导出
摘要 针对水下视频质量不高、视频模糊不清甚至很难辨认的问题,利用计算机视觉技术对水下鱼类目标进行快速目标检测,提出了一种基于背景去除的水下视频目标检测方法。设计适合水下环境的鱼类目标检测框架,使用偏最小二乘(PLS)分类器进行目标检测。利用水下拍摄的鱼类数据集收集输入的视频序列,并提取单独的帧。将帧的RGB格式转换为HSI格式并进行中值滤波器去噪的预处理,利用GMG背景去除过程,提取了基于局部二值模式(LBP)纹理和灰度系数的重要特征,最后将所提取的特征,利用PLS分类器,实现了分别对白天及夜晚环境中的水下鱼类目标检测。结果表明,该方法在水下拍摄的鱼类视频数据集目标检测精度可达96.89%,提高了检测效率,降低了人工成本。为水下鱼类等生物资源的监测、保护和可持续开发等工程应用提供了一定的参考价值。 In order to overcome the problems of underwater videos,such as low quality,blurring and even unrecognizability,using the computer vision technology for fast detection of underwater fish targets,an underwater video object detection method was proposed based on background removal methods.An object detection framework for underwater fish was designed,using the partial least squares(PLS)classifier for object detection.Input video sequences were collected from underwater fish data sets,and individual frames were extracted.After the format conversion of RGB to HSI and median filter denoising pretreatment,using the GMG background removal process,the texture and the characteristic of the gray scale coefficient were extracted based on local binary(LBP)pattern.At last,with the above extracted characteristics,the object detection of underwater fish in the daytime and night was realized using the PLS classifier.The results show that the method can achieve the object detection accuracy of 96.89%using the underwater fish video datasets,which improves the detection efficiency of underwater fish and reduces the labor cost.It can also provide some guidance for the monitoring,protection and sustainable development of underwater fish and other biological resources.
作者 张明华 龙腾 宋巍 黄冬梅 梅海彬 覃学标 ZHANG Ming-hua;LONG Teng;SONG Wei;HUANG Dong-mei;MEI Hai-bin;QIN Xue-biao(College of Information Technology,Shanghai Ocean University,Shanghai 201306,China;Shanghai University of Electric Power,Shanghai 200090,China)
出处 《图学学报》 CSCD 北大核心 2021年第1期52-58,共7页 Journal of Graphics
基金 国家自然科学基金面上项目(61972240) 上海市科委能力建设项目(17050501900) 大洋渔业资源可持续开发教育部重点实验室开放基金项目(A1-2006-00-301104)。
关键词 偏最小二乘 背景去除 鱼类 目标检测 动态视觉序列 partial least squares background removal fish object detection dynamic video sequence
  • 相关文献

参考文献5

二级参考文献42

  • 1王猛,杨杰,白洪亮.基于区域分割的水下目标实时识别系统[J].系统仿真技术,2005,1(1):33-39. 被引量:3
  • 2林开颜,吴军辉,徐立鸿.基于计算机视觉技术的水果形状分级方法[J].农业机械学报,2005,36(6):71-74. 被引量:46
  • 3陈全胜,赵杰文,张海东,方明.利用计算机视觉识别茶叶的色泽类型[J].江苏大学学报(自然科学版),2005,26(6):461-464. 被引量:45
  • 4吴成茂,范九伦.基于交叉熵阈值法的快速迭代算法[J].计算机应用与软件,2007,24(6):6-8. 被引量:2
  • 5YANG Jie, ZHANG Mingjun, XU Jianan. A visual tracking method of mobile robot[ C ]//Proceedings of the World Congress on Intelligent Control and Automation (WCICA). Piscataway: Institute of Electrical and Electronics Engineers Inc, 2006:.
  • 6RIZON M, YAZID H, SAAD P, et al. Object detection using geometric invariant moment [ J ]. American Journal of Applied Sciences, 2006, 2 (6) : 1876-1878.
  • 7CHEN Y F, ZHANG M D. Local moment invariant analysis [ C]//Proceedings of the Conference on Computer Graphics, Imaging and Vision: New Trends 2005. Piscataway:Institute of Electrical and Electronics Engineers Computer Society, 2005 : 137-140.
  • 8PENG D L, WU T J. A generalized image enhancement algorithm using fuzzy sets and its application [ C]//Proceedings of 2002 International Conference on Machine Learning and Cybernetics. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2002:820-823.
  • 9Choi H., Baraniuk R.. Image segmentation using wavelet-domain classification. In: Proceedings of SPIE, Denver, CO., 1999, 3816: 306~320.
  • 10Fan G.L.. Wavelet domain statistical image modeling and processing[Ph.D. dissertation]. University of Delaware, USA, 2001.

共引文献108

同被引文献41

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部