期刊文献+

基于深度置信神经网络的变风量空调送风量的预测 被引量:8

Prediction of supply air volume of variable air volume air-conditioning based on deep-confidence neural network
下载PDF
导出
摘要 送风量的精准预测是实现变风量空调蓄冷量精确控制的重要环节。本文根据变风量空调送风量的影响参数,基于深度置信神经网络方法,建立变风量空调送风量的预测模型。将该模型的预测结果同BP、Elman和模糊神经网络的预测结果进行对比,结果表明,深度置信神经网络的预测精度最高,平均绝对相对误差、均方根相对误差和决定系数分别为1.555%、0.789%和0.9975,由此说明本文建立的模型能够精确有效地预测变风量空调的送风量。 The accurate prediction of the supply air volume is an important part to realize the precise control of the cold storage volume of the variable air volume air-conditioning.In this paper,according to the influence parameters of the variable air volume air-conditioning supply air volume,based on the deep-confidence neural network method,a prediction model of the variable air volume air-conditioning supply air volume is established.By comparing the prediction results of this model with those of BP,Elman,and fuzzy neural networks,the results show that the deep-confidence neural network has the highest prediction accuracy,and the average absolute relative error,root mean square relative error,and determination coefficient are 1.555%,0.789%and 0.9975,respectively,showing that the model established in this paper can accurately and effectively predict the supply air volume of the variable air volume air-conditioning.
作者 雷蕾 王宁 郑皓 薛雨 LEI Lei;WANG Ning;ZHENG Hao;XUE Yu(Guilin University of Electronic Technology,Guilin 541004,China;Dalian University of Technology,Dalian 116024,China)
出处 《流体机械》 CSCD 北大核心 2021年第3期85-90,共6页 Fluid Machinery
基金 国家自然科学基金项目(51708146) 广西科技基地和人才专项(桂科AD18281046) 广西自然科学基金项目(2018GXNSFAA281283)。
关键词 变风量空调 送风量 深度置信神经网络 预测模型 ariable air volume air-conditioning supply air volume deep-confidence neural network method prediction model
  • 相关文献

参考文献3

二级参考文献15

共引文献27

同被引文献91

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部