期刊文献+

基于深度学习的医疗图像分割综述 被引量:11

A Survey on Medical Image Segmentation Based on Deep Learning
下载PDF
导出
摘要 自2006年深度学习这一概念提出以来,各研究领域对于深度学习技术的研究热度一直高居不下。深度学习的出现,对计算机视觉领域的发展起到了重要推动作用。计算机视觉的主要研究任务是对图像、视频等进行目标的检测、识别以及分割等,目前已经广泛应用于医疗、金融和工业领域中。其中最常见的应用场景是医学图像处理。图像分割是医学图像处理任务中一个重要的研究方向,目前已经出现了很多图像分割方法,其中包含传统的分割方法和基于深度学习模型的分割方法。首先介绍了阈值分割法、区域生长法以及图割法等传统的图像分割方法;其次总结了FCN、U-Net、U-Net++、SegNet以及DeepLab系列的网络架构,并对其优缺点进行了分析;同时,着重阐述了图像分割方法在医疗图像处理中的应用;最后讨论了未来基于深度学习的医学图像分析将要面临的挑战和发展机遇。 Since the concept of deep learning was proposed in 2006,research enthusiasm for deep learning technology in various fields has been high.The emergence of deep learning has played an important role in promoting the development of computer vision.The main task of computer vision is to detect,identify or segment objects in images and videos.It has been widely used in medical,financial and industrial fields,and the most common application scenario is medical image processing.Image segmentation is an important research direction in medical image processing tasks.Current image segmentation methods include methods of traditional and methods based on deep learning.Firstly,we introduce traditional image segmentation methods such as threshold segmentation,region growing and graph cutting.Secondly,we summarize the network architecture of FCN,U-Net,U-Net++,SegNet and DeepLab,and analyze their advantages and disadvantages.Next,we focus on the application of image segmentation method in medical image processing.Finally,we discuss future challenges and development opportunities for medical image analysis based on deep learning.
作者 孔令军 王茜雯 包云超 李华康 KONG Lingjun;WANG Qianwen;BAO Yunchao;LI Huakang(Jinling Institute of Technology,Nanjing 211169,China;Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Xi’an Jiaotong-Liverpool University,Suzhou 215123,China)
出处 《无线电通信技术》 2021年第2期121-130,共10页 Radio Communications Technology
基金 中国博士后科学基金资助项目(2020M671595) 江苏省博士后科研资助计划项目(2020Z198)。
关键词 人工智能 深度学习 医疗图像 图像分割 artificial intelligence deep learning medical image image segmentation
  • 相关文献

参考文献4

二级参考文献40

  • 1https://public.cancerimagingarchive.net/ncia/login.jsf.
  • 2Doi K.Computer-aided diagnosis in medical imaging:historical review,current status and future potential[J].Computerized Medical Imaging and Graphics,2007,31 (4/5):198-211.
  • 3Reeves A P,Chan A B,Yankelevitz D F.On measuring the change in size of pulmonary nodules[J].IEEE Transaction on Medical Imaging,2006,25(4):435-450.
  • 4Dehmeshki J,Amin D,Valdivieso M,et al.Segmentation of pulmonary nodules in thoracic CT scans:a region growing approach[J].IEEE Transaction on Medical Imaging,2008,27(4):467-480.
  • 5Jiang X,Nie S D.Segmentation of pulmonary nodule in CT image based on level set method[C]//Proceedings of the 2nd International Conference on BiMnformatics and Biomedical Engineering.Los Alamitos:IEEE Computer Society Press,2008:2698-2701.
  • 6McIntosh C,Hamarneh G.Medial based deformable models in nonconvex shape spaces for medical image segmentation[J].IEEE Transaction on Medical Imaging,2012,31 (1):33-50.
  • 7Murphy K,van Ginneken B,Schilham A M R.A large scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k nearest neighbor classification[J].Medical Image Analysis,2009,13 (5):757-770.
  • 8Boykov Y,Funka Lea G.Graph cuts and efficient N-D image segmentation[J].International Journal of Computer Vision,2006,70(2):109-131.
  • 9Chen X J,Udupa J K,Bagci U,et al.Medical image segmentation by combining graph cuts and oriented active appearance models[J].IEEE Transaction on Image Processing,2012,21(4):2035-2046.
  • 10Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum Press,1981.

共引文献1836

同被引文献51

引证文献11

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部