期刊文献+

单一裂隙渗流的格子Boltzmann数值模拟 被引量:1

Lattice Boltzmann Numerical Simulation of Seepage in Single Fracture
原文传递
导出
摘要 基于格子Boltzmann方法在计算流体力学方面具有程序易于实现、边界条件处理简洁、计算效率高、可得到清晰物理图像等优点,将其与D2Q9模型结合,采用非平衡外推格式的分布函数边界,建立单一光滑平板裂隙渗流模型,并结合经典流体力学的泊肃叶流算例,验证了模型的有效性。最后,分析不同压力差、不同隙宽对单一裂隙渗流量及流量稳定所需计算时步的影响,得出:单一裂隙渗流过程中,压力差或隙宽越大则该时刻下的渗流量越大,而渗流量达到稳定的计算时步与压力差和隙宽呈相反关系,即压力差与隙宽越大则其渗流量达到稳定所需计算时步越长。 Based on the lattice Boltzmann method in computational fluid dynamics, it has the advantages of easy implementation of the program, simple boundary condition processing, high computational efficiency, and clear physical images. Combining it with the D2 Q9 model, adopts the distribution function boundary of the non-equilibrium extrapolation format. A single smooth flat fracture seepage model is established, and combined with a Poiseuille flow calculation example of classical fluid mechanics, the validity of the model is verified. Finally, analyze the influence of different pressure differences and different gap widths on the seepage flow rate of a single fracture and the calculation time steps required for flow stabilization. It is concluded that in the process of single fracture seepage,the larger the pressure difference or the gap width, the greater the seepage flow rate at that moment.The calculation time step for the seepage flow to stabilize is inversely related to the pressure difference and the gap width, that is, the larger the pressure difference and the gap width, the longer the calculation time step required for the seepage flow to reach stability.
作者 董武书 张跃 DONG Wu-shu;ZHANG Yue(School of Architectural and Engineering,Kunming University of Science and Technology,Kunming 650500,China)
出处 《煤炭技术》 CAS 北大核心 2021年第1期82-85,共4页 Coal Technology
基金 昆明理工大学分析测试基金(2019M20182210025)。
关键词 格子Boltzmann方法(LBM) 数值模拟 泊肃叶流 单一光滑裂隙渗流 lattice Boltzmann method(LBM) numerical simulation Poiseuille flow single smooth fracture seepage
  • 相关文献

参考文献5

二级参考文献11

  • 1Y.H.Qian en al.,Lattiee BGK Models for Navier-Stokes Equation [J]. Europhys, 1992,17 ( 6 ):479-484.
  • 2A.Renda, GBella, S.Succi and I.VKarlin. Thermohydrodynamic lattice BGK schemes with non-perturbative equilibria [J]. Europhys, 1998,41 (3):279-283.
  • 3Y.Chen.H.Ohashi, and M. Akiyama. Thermal lattice Bhatna- gar-Gross-Krook model without nonlinear devialions in macro- dynamic equations[J]. Phys. Rev,1994(50):2776-2783.
  • 4Y.H. Qian and S.A. Orszag. Lattice BGK Models for the Navier-Stokes Equation: Nonlinear Deviation in Compressible Regimes[J].Eurnphys, 1993,21 ( 3 ):255-299.
  • 5Qian Y-H, Zhou Y. Complete Galilean-invariant lattice BGK models for the Navier-Stokes equation[J]. Europhys,1998,42(4): 359-364.
  • 6P.J. Dellar. Compound waves in a thermohydrodynamic lattice BGK scheme using non-perturbative equilibria [J]. Eumphys, 2002,57( 5 ):690-696.
  • 7同济大学.高等数学[M]{H}北京:高等教育出版社,2008.
  • 8胡新珉.《医学物理学》第7版[M]北京:人民卫生出版社,2008.
  • 9林鸿,陶文铨.质子交换膜燃料电池的三维数值模拟[J].西安交通大学学报,2008,42(1):41-45. 被引量:6
  • 10于晓丽.落地原油对土壤污染及治理技术[J].农业环境与发展,2000,17(3):28-29. 被引量:19

共引文献11

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部