期刊文献+

基于数据驱动的非全实时观测配电网无功优化方法 被引量:11

Reactive Power Optimization of Partial Real-Time Visible Distribution Network Based on Data Driven
原文传递
导出
摘要 现阶段配电网中量测设备覆盖率较低,只有部分节点的负荷数据可以实时采集得到,因此在配电网中进行实时无功优化时无法使用基于潮流计算的优化方法。考虑到以上情况,文章提出了一种基于数据驱动的非全实时观测配电网无功优化方法。该方法基于历史运行数据使用最优潮流离线生成无功优化策略,并通过训练神经网络构建可实时量测节点负荷数据和无功优化策略间的映射关系,实现对非全实时观测配电网的实时无功优化。最后基于改造的IEEE 33节点系统,将所提方法与传统九区图无功优化方法作对比,验证了所提方法的有效性。 At present, the coverage of measuring equipment in distribution network is low, so only part of the nodes’ load data can be collected in real time. This situation makes it impossible to use the optimization based on power flow calculation in the real-time reactive power optimization of distribution network. Considering the above situation, this paper proposes a data-driven reactive power optimization method based on partial real-time visible distribution network. According to the historical operation data, the optimal power flow is used to generate the reactive power optimization strategy offline, and the mapping between the real-time measured node load data and the reactive power optimization strategy is established by training the neural network to realize the real-time reactive power optimization of the partial real-time visible distribution network. Finally, in the modified IEEE 33-bus system, the proposed method is compared with the 9-zone diagram method to verify the effectiveness of the proposed method.
作者 王珺 田恩东 马建 窦晓波 刘之涵 WANG Jun;TIAN Endong;MA Jian;DOU Xiaobo;LIU Zhihan(Power Supply Service Management Center,State Grid Jiangxi Electric Power Co.,Ltd.,Nanchang 330096,China;School of Electrical Engineering,Southeast University,Nanjing 210096,China)
出处 《电力建设》 CSCD 北大核心 2021年第2期68-76,共9页 Electric Power Construction
基金 国家电网公司科技项目“人工智能与大数据分析在提升我省供电服务质效中的应用研究”(521820180014)。
关键词 神经网络 配电网 无功优化 数据驱动 neural network distribution network reactive power optimization data-driven
  • 相关文献

参考文献9

二级参考文献100

  • 1王志群,朱守真,周双喜,黄仁乐,王连贵.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60. 被引量:417
  • 2陈琳,钟金,倪以信,甘德强,熊军,夏翔.含分布式发电的配电网无功优化[J].电力系统自动化,2006,30(14):20-24. 被引量:134
  • 3夏可青,赵明奇,李扬.用于多目标无功优化的自适应遗传算法[J].电网技术,2006,30(13):55-60. 被引量:32
  • 4Soroudi A, Ehsan M. A distribution network expansion planning model considering distributed generation options and techo-economical issues[J]. Energy, 2010, 35(8): 3364-3374.
  • 5Martinez-Rojas M, Sumper A, Gomis-Bellmunt O, et al. Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search[J]. Appl Energy, 21311, 88(12): 4678-4686.
  • 6Malekpour A R, Tabatabaei S, Niknam T. Probabilistic approach to multi-objective Volt/Var control of distribution system considering hybrid fuel cell and wind energy sources using Improved Shuffled Frog Leaping Algorithm[J]. Renewable Energy, 2012, 39(1): 228-240.
  • 7Niknam T. A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering distributed generators[J]. Appl Energy, 2011, 88(3): 778-788.
  • 8Alonso M, Amaris H, Alvarez-Ortega C. A rnultiobjective approach for reactive power planning in networks with wind power generation[J]. Renewable Energy, 2012, 37(1): 180-191.
  • 9Mahfouf M, Chen M Y, Linkens D A. Adaptive weighted particle swarm optimisation for multi-objective optimal design of alloy steels[J]. Lect Note Cornput Sci, 2004, 3242: 762-771.
  • 10Baran M E, Wu F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Power Eng Rev, 1989, 9(4): 101-102.

共引文献267

同被引文献173

引证文献11

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部