摘要
在现有泊松方程及电流连续性方程的放电模型基础上,通过引入载流子密度波动源建立具有多分支流注形貌的放电改进模型;通过COMSOL软件仿真分析了雷电冲击电压为120kV、160kV和200kV时的放电结果。结果表明:改进模型的流注分支形貌比原模型更接近试验结果;最大场强主要分布在流注头部,且均超过2×108 V/m,其中200kV时由二次流注引起的场强和电荷变化最为明显。此外,3种电压下的z轴流注发展长度和速度还表明流注分支间电荷的相互排斥对流注有抑制作用。而对比电压上升沿时间分别为5ns、10ns、50ns和120ns时的流注形貌还发现:电压上升沿时间越短,流注半径越大,分支越多。该文的研究成果有助于分析放电过程中载流子密度波动对流注分支的影响机理。
An improved discharge model with a multi-branch streamer pattern was established by considering the carrier density fluctuation based on the Poisson equation and current continuity equation. The discharge results under 120 kV, 160 kV, and 200 kV positive impulse voltage are obtained by COMSOL software, respectively. Results show that the streamer branch pattern of the improved model is closer to the experimental discharge phenomenon than the original model. The maximum field strength is mainly distributed in the streamer head, and all exceed 2×108 V/m, and the field strength and charge changes caused by the secondary streamer at 200 kV are the most obvious. In addition, the propagation length and velocity of the z-axis streamer under three voltages also show that the mutual repulsion of the charges between the streamer branches has a significant effect on the suppression of the propagation of the streamer. Compared with the streamer pattern when the voltage rising time is 5 ns, 10 ns, 50 ns and 120 ns: the shorter the voltage rising time, the larger the streamer radius, and the more the branches. This study is helpful to analyze the effect mechanism of carrier density fluctuations on streamer branches during the discharge.
作者
陈刚
李剑
黄正勇
王飞鹏
但林阳
段瑜
CHEN Gang;LI Jian;HUANG Zhengyong;WANG Feipeng;DAN Linyang;DUAN Yu(State Key Laboratory of Power Transmission Equipment&System Security and New Technology(Chongqing University),Shapingba District,Chongqing 400030,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2021年第3期1176-1184,共9页
Proceedings of the CSEE
基金
国家自然科学基金项目(51425702)
重庆市基础研究与前沿探索项目(cstc2018jcyjAX0658)。
关键词
植物绝缘油
仿真
流注放电
电场分布
电压上升沿时间
vegetable insulating oil
simulation
streamer discharge
distribution of electric field
voltage rising time