期刊文献+

FDM型增材制造中送丝机构动态监测与识别 被引量:3

Dynamic monitoring and identification of wire feeder in FDM-based additive manufacturing
下载PDF
导出
摘要 为了研究在增材制造过程中,流量比(打印机打印速度与丝材挤出速度之间的比值)的异常状态对喷头阻塞或打印产品分层现象的影响情况,采用加速度振动传感器监测送丝机构中电机的工作状态.采集打印过程中送丝机构电机不同运动状态的振动信号,利用傅里叶变换方法将时域信号转换成频域信号.基于频域数据提取表征每组信号间差异的特征值,通过KNN分类算法并引入K折交叉验证,研究特征量以明确故障模式与信号的关系,识别送丝机构的不同运动状态.实验结果表明,以信号频域数据差异为特征量提出的监测方法对异常流量比的识别准确率达到92.73%. An acceleration vibration sensor was used to monitor the working state of the motor in the wire feeder,in order to study the effect of abnormal flow ratio(the ratio between the printing speed of the printer and the extrusion speed of the wire material)on nozzle blocking or lamination of printed products in the additive manufacturing process.The vibration signal of the wire feeder motor in different motion state during the printing process were collected,and the Fourier transform method was used to convert the time domain signal into frequency domain signal.Based on a frequency domain data,the characteristic value that characterizes the difference between each group of signals was extracted,KNN classification algorithm and K-fold cross-validation were introduced,the characteristic quantity was studied to clarity the relationship between the failure mode and the signal,to identify the different motion states of the wire feeder.Experimental results show that the proposed monitoring method has an accuracy of 92.73%for the identification of abnormal flow ratio,by using the signal frequency domain data difference as the characteristic quantity.
作者 刘晓伟 陈赟 张思 陈康 LIU Xiao-wei;CHEN Yun;ZHANG Si;CHEN Kang(School of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China;Jiangsu Key Laboratory of Advance Manufacturing of Ship and Ocean Machinery Equipment,Zhenjiang 212003,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第3期548-554,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(51705214,51875003) 江苏省自然科学基金资助项目(BK20170582).
关键词 增材制造 熔融沉积成型(FDM) 送丝机构 流量比 过程监测 additive manufacturing fused deposition modeling(FDM) filament feeding flow ratio process monitoring
  • 相关文献

参考文献4

二级参考文献25

  • 1曾芬芳,虞平良,陈红卫,俞孟蕻.锚链闪光焊计算机参数测试系统[J].造船技术,1995(8):42-44. 被引量:2
  • 2HUANG Y, LEU M C, MAZUMDER J. Additive manufacturing: current state, future potential, gaps and needs, and recommendations [J]. Journal of Manu- facturing Science and Engineering, 2015, 137 ( 1 ): 014001.
  • 3GUO N, LEU M C. Additive manufacturing: technolo- gy, applications and research needs [J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215- 243.
  • 4WOHLERS T T. Wohlers Report 2015: additive manu- facturing and 3D printing state of the industry: annual worldwide progress report [M]. [S. 1.] : Woh|ers Asso- ciates, 2015.
  • 5PEI E, IAN CAMPBELLR, DE BEER D. Entry-level RP machines: how well can they cope with geometric complexity? [J]. Assembly Automation, 2011, 31 (2) : 153 - 160.
  • 6TAPIA G, ELWANY A. A review on process monito- ring and control in metal-based additive manufacturing [J]. Journal of Manufacturing Science and Engineering, 2014, 136(6): 060801.
  • 7US DEPARTMENT OF COMMERCE N. Roadmap- pingworkshop: measuremen science for prognostics and health management of smart manufacturing systems [EB/OL]. 2015-08-01. http://www, nist. gov/el/isd/ phm4sms-workshop, elm.
  • 8KANTAROS A, KARALEKAS D. Fiber Bragg grating based investigation of residual strains in ABS parts fab- ricated by fused deposition modeling process [J]. Mate- rials and Design, 2013, 50 .. 44 - 50.
  • 9LOTT P, SCHLEIFENBAUM H, MEINERS W, et al. Design of an optical system for the in situ process monitoring of selective laser melting (SLM) [J]. Physics Procedia, 2011, 12, Part A: 683-690.
  • 10RAO P, LIU J, ROBERSON D,et al. Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors [J]. Journal of Manufac- turing Science and Engineering, 2015,137 ( 6 ) : 061007.

共引文献25

同被引文献28

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部