期刊文献+

功率分流齿轮传动参数空间解域界及吸引域全局特性 被引量:1

Global characteristics of basin of attraction and parameterized solution domain of power-split gear transmission
下载PDF
导出
摘要 为揭示齿轮系统动力学全局解域特性,建立了功率分流直齿轮系统非线性振动模型,结合胞映射与区域分解思想构建了主要激振参数下的系统全局解域求解算法。求解了阻尼比分别与综合传动误差、啮合频率和齿侧间隙等参数配置下的平面解域界结构,揭示了两参量解域区内的动态行为潜在趋势,如倍周期分岔序列、混沌窗口带等的迁移演化。借助Lyapunov指数对不同误差幅值下分岔通道结构进行追踪,验证了分岔节点与解域界子域临界点相吻合。数值求解多组阻尼比下的吸引域全局性态,发现混沌吸引域与周期1吸引子吸引域间相互扩张与进退演变激烈,二者胞域边界处系统局部平衡态势异常脆弱;当阻尼比为0.04时吸引域行为相对敏感,多吸引子共存现象突出。其结果可为齿轮系统振动优化及参数全局设计提供参考。 In order to investigate the global characteristics of dynamic solutions of gear systems,a nonlinear dynamical model of the power-split spur gear transmission is established,and the calculation algorithm regarding global solutions under main excitation parameters is deduced based on cell mapping method(CMM)as well as domain decomposition method(DDM).Parametric planar solution domains constructed by damping ratio respectively with synthetically transmission error,mesh frequency and backlash are computed,and the potential global evolution behaviors within solution domains are exhibited,such as period-doubling bifurcation cascades,chaotic window zones.The bifurcation routes inside solution domain with respect to varied error magnitudes are tracked by applying largest Lyapunov exponent,which demonstrate that bifurcation nodes are in consistent with the subdomain boundary points presented in parameterized solution domain.By numerically calculating the global behaviors of the basin of attraction under multiple damping ratios,it is shown that mutual expansion and retrogression between the chaotic basin of attraction and the period 1 basin of attraction are remarkably,and the local equilibrium of the cells nearby the boundary is extremely unstable.The basin of attraction is sensitively while the damping ratio reaches 0.04,and multiple attractors coexisting phenomenon exhibits significantly.The result could provide references for vibration optimization or even global design of dynamic parameters for gear system.
作者 林何 洪灵 刘霞 胥光申 LIN He;HONG Ling;LIU Xia;XU Guang-shen(School of Mechanical and Electrical Engineering,Xi′an Polytechnic University,Xi′an 710048,China;State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi′an Jiaotong University,Xi′an 710049,China;Xi′an Key Laboratory of Modern Intelligent Textile Equipment,Xi′an Polytechnic University,Xi′an 710600,China)
出处 《振动工程学报》 EI CSCD 北大核心 2021年第2期235-242,共8页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51805402) 陕西省自然科学基础研究计划项目(2019JQ-851) 陕西省教育厅专项科研计划(18JK0351) 西安市现代智能纺织装备重点实验室(2019220614SYS021CG043)。
关键词 机械振动 功率分流传动 胞映射 解域界 吸引域 mechanical vibration power-split gear transmission cell mapping method parameterized solution domain basin of attraction
  • 相关文献

参考文献8

二级参考文献55

  • 1林腾蛟,王丹华,冉雄涛,赵俊渝.多级齿轮传动系统耦合非线性振动特性分析[J].振动与冲击,2013,32(17):1-7. 被引量:20
  • 2刘梦军,沈允文,董海军.齿轮系统参数对全局特性影响的研究[J].机械工程学报,2004,40(11):58-63. 被引量:7
  • 3王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51. 被引量:82
  • 4KAHRAMAN A, S1NGH R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system[J]. Journal of Sound and Vibration, 1991, 146(1): 135-156.
  • 5MA Q, KAHRAMAN A. Period-one motions of a mechanical oscillator with periodically time-varying,piecewise-nonlinear stiffness[J]. Journal of Sound and Vibration, 2005, 284: 893-914.
  • 6MA Q, KAHRAMAN A. Subharmonic resonances of a mechanical oscillator with periodically time-varying, piecewise-nonlinear stiffness[J]. Journal of Sound and Vibration, 2006, 294: 624-636.
  • 7HSU C S. Global analysis by cell mapping[J]. Int. J. of Bifurcation and Chaos, 1992, 2(4). 727-771.
  • 8HSU C S. Global analysis of dynamical systems using posets and digraphs[J]. Int. J. of Bifurcation and Chaos, 1995, 5(4): 1085-1118.
  • 9HONG L, XU J. Crises and chaotic transients studied by the generalized cell mapping digraph method[J]. Physics LettersA, 1999, 262: 361-375.
  • 10唐进元,陈思雨.阻尼和刚度项含时变参数的强非线性振动系统周期解研究[J].振动与冲击,2007,26(10):96-100. 被引量:7

共引文献67

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部