摘要
以石墨片微元构建活性炭的结构模型,采用巨正则蒙特卡罗(GCMC)方法从微观研究H2在以活性炭为基的复合吸氢剂中的吸附特性,获得了不同条件下复合吸氢剂对H2的吸附过程。结果表明,氧化物吸氢剂修饰对活性炭材料的表面化学性能影响较大,引入之后使其吸氢量增加了一倍以上;氧化物吸氢剂嫁接在活性炭上的不同位置吸氢效果不同,以双键连接位置为佳;在低温领域选择PdO的替代材料时,温度为77 K时,优选顺序为Cu2O>Ag2O>CuO,当温度为90.5 K、111 K、194.5 K时,优选顺序为CuO>Cu2O>Ag2O。
A structure model of activated carbon with the graphite sheet micro-elements was built, the Grand Canonical Monte Carlo(GCMC) method was used to microscopically study the adsorption characteristics of H2 in the activated carbon-based composite hydrogen absorbing agent, and the H2 adsorption process of the composite hydrogen absorption under different conditions was obtained.The results indicate that the modification of the oxide hydrogen getter agent has a great impact on the surface chemical properties of the activated carbon material, and the hydrogen absorption capacity of activated carbon materials has more than doubled after the introduction of oxide hydrogen absorbing agent.The position where the oxide hydrogen absorbing agent is grafted on the activated carbon affects its hydrogen absorption capacity, and the position of double bond connection is better.At the temperature of 77 K, when selecting a substitute material for PdO in the low temperature field, Cu2 O has the best hydrogen absorption capacity, followed by Ag2 O and CuO is the worst.At the temperature of 90.5 K, 111 K, and 194.5 K, when selecting a substitute material for PdO in the low temperature field, CuO has the best hydrogen absorption capacity, followed by Cu2O and Ag2 O is the worst.
作者
张耕
刘文洁
谭粤
李蔚
夏莉
陈树军
Zhang Geng;Liu Wenjie;Tan Yue;Li Wei;Xia Li;Chen Shujun(Guangdong Institute of Special Equipment Inspection,Foshan 528000,China;College of Pipeline and Civil Engineering,China University of Petroleum(East China),Qingdao 266580,China)
出处
《低温与超导》
CAS
北大核心
2021年第3期5-14,共10页
Cryogenics and Superconductivity
基金
国家自然科学基金(51306210)
中央高校基本科研业务费专项资金(18CX02080A)
广东省质量技术监督局科技项目(2018ZT01)
山东省自然科学基金项目(ZR2019MEE005)资助。
关键词
低温容器
活性炭
吸氢剂
蒙特卡罗方法
Cryogenic container
Activated carbon
Hydrogen absorbent
Monte Carlo method