期刊文献+

基于电机电流经验模态分解的行星轮故障诊断 被引量:6

Planetary Fault Diagnosis Based on Empirical Modal Decomposition of Motor Current
下载PDF
导出
摘要 在故障诊断领域,电机电流信号分析法(MCSA)已经逐渐应用于齿轮故障诊断中,但该方法在诊断行星轮缺齿故障时由于电流基频干扰较大,导致故障特征不明显,难以实现故障诊断。因此提出一种基于电流信号经验模态分解(EMD)的故障诊断方法。通过对电机电流信号进行EMD分解,选取合适的IMF分量经傅立叶变换求其频谱图,根据频谱图中是否存在与故障特征频率相关的频率,实现了对行星轮缺齿故障的有效诊断。并通过实验分析,验证了该方法的有效性。 In the field of fault diagnosis,motor current signal analysis(MCSA)has been gradually applied to gear fault diagnosis,but the fault features are not obvious due to the large current base frequency interference in the diagnosis of planetary gear tooth fault.Therefore,this paper proposes a fault diagnosis method based on the empirical mode decomposition(EMD)of current signals.Through EMD decomposition of the motor current signal,the appropriate IMF component is selected through Fourier transform to obtain its spectrum diagram.According to whether there are frequencies related to the fault characteristic frequency in the spectrum diagram,the effective diagnosis of the fault of planetary gear tooth is realized.The effectiveness of the method is verified by experimental analysis.
作者 门兰城 庞新宇 李峰 刘利平 MEN Lan-cheng;PANG Xin-yu;LI Feng;LIU Li-ping(College of Mechanical and Transportation Engineering,Taiyuan University of Technology Taiyuan,Shanxi Taiyuan 030024,China;Yangquan Coal Industry(group)CO.LTD,Shanxi Yangquan 045000,China)
出处 《机械设计与制造》 北大核心 2021年第4期39-42,47,共5页 Machinery Design & Manufacture
基金 基于振动与电机电流信息融合的转子系统载荷识别及故障诊断方法(51475318)。
关键词 故障诊断 行星轮 经验模态分解(EMD) 电机电流 Fault Diagnosis Planetary Wheel Empirical Mode Decomposition(EMD) Motor Current
  • 相关文献

参考文献4

二级参考文献64

  • 1丁康,米林,王志杰.解调分析在故障诊断中应用的局限性问题[J].振动工程学报,1997,10(1):13-20. 被引量:42
  • 2李润方 王建军.齿轮系统动力学[M].北京:科学出版社,1997..
  • 3吴宗泽.机械零件设计手册[M].北京:机械工业出版社,2003..
  • 4Amirat Y, Benbouzid M E H, A1-Ahmar E, et al. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 5Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 6Samuel P D, Pines D J. A review of vibration-based techniques for helicopter transmission diagnostics[J]. Journal of Sotmd and Vibration, 2005, 282(1-2): 475-508.
  • 7Feng Z P, Zuo M J. Vibration signal models for fault diagnosis of planetary gearboxes[J]. Journal of Sound and Vibration, 2012, 331(22): 4919-4939.
  • 8McFadden P D. A technique for calculating the time domain averages of the vibration of the individual planet gears and the sun gear in an epicyclic gearbox[J]. Journal of Sound and Vibration, 1991, 144(1): 163-172.
  • 9McFadden P D. Window functions for the calculation of the time domain averages of the vibration of the individual planet gears and sun gear in an epicyclic gearbox[J]. Journal of Vibration and Acoustic, 1994, 116(2): 179-187.
  • 10Samuel P D, Pines D J. Vibration separation methodology for planetary gear health monitoring[J]. Proceeding of SPIE, 2000, 3985(250): 250-260.

共引文献154

同被引文献74

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部