期刊文献+

基于增量分析和PSO-LSSVM的热轧辊缝调平预测模型 被引量:8

Prediction model of hot rolling gap leveling based on incremental analysis and PSO-LSSVM
下载PDF
导出
摘要 辊缝调平在保证热轧带钢板形质量和轧制稳定性中起着关键作用,目前以操作人员目测后经验调整为主,无法满足未来少人化、智能化轧制技术需求。为此,基于增量分析方法实现工艺参数增量因子提取,有效解决传统离散数据预测中部分信息丢失问题;同时以粒子群算法(PSO)优化最小二乘支持向量机(LSSVM)模型参数,使得参数选取更加科学。采用某钢厂1580热轧生产数据进行验证,结果表明,基于增量分析和PSO-LSSVM的预测模型能够较好地预测调平值及调平曲线趋势,精轧下游F5~F7调平预测精度在95%左右,可为现场调平策略设定提供辅助手段,也为今后无人化轧制技术的发展提供关键理论支撑。 Roll gap leveling plays a key role in shape control and rolling stability of hot-rolled strip.At present,the operator's experience adjustment after visual inspection is the main method,which cannot meet the demand of less human and intelligent rolling technology in the future.Incremental factor extraction of process parameters is realized based on incremental analysis method,which effectively solves the problem of partial information loss in traditional discrete data prediction.At the same time,the particle swarm optimization algorithm is used to optimize the parameters of LSSVM model,which makes the parameter selection more scientific.The production data of a 1580mm hot rolling line are used for verification,results show that the prediction model based on incremental analysis and PSOLSSVM can better predict the leveling value and leveling curve trend,and the F5-F7leveling prediction accuracy of downstream in finishing rolling is about 95%,which provides assistance for setting of leveling strategy and provides key theoretical support for the development of unmanned rolling technology in the future.
作者 张卫 李天伦 侯庆龙 何安瑞 邵健 ZHANG Wei;LI Tian-lun;HOU Qing-long;HE An-rui;SHAO Jian(Technology Center,Xinyu Iron and Steel Group Co.,Ltd.,Xinyu 338001,Jiangxi,China;National Engineering Technology Research Center of Flat Rolling Equipment,University of Science and Technology Beijing,Beijing 100083,China)
出处 《中国冶金》 CAS 北大核心 2021年第3期122-128,共7页 China Metallurgy
基金 国家自然基金资助项目(51674028) 中央高校基本科研业务费资助项目(FRF-DF-19-003)。
关键词 热连轧 辊缝调平预测 增量分析 PSO-LSSVM 板形控制 hot strip mill roll gap leveling prediction incremental analysis PSO-LSSVM shape control
  • 相关文献

参考文献12

二级参考文献98

共引文献79

同被引文献86

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部