摘要
[目的/意义]梳理LIS领域学科知识的发展脉络,追踪、预测学科研究热点和增长点。[研究设计/方法]基于LIS领域国外和国内核心期刊数据,使用TP-JIF模型计算学科主题的热度并衡量学科主题的状态,对LIS领域国内外研究热点和学科增长点进行演化分析;使用TPP-LSTM学科主题预测模型,对LIS领域国内外的研究热点和增长点进行预测。[结论/发现]国内外LIS领域研究热点的体量和侧重点具有较大差异,国外研究热点聚焦在社交媒体、电子病历、知识管理、文献计量、机器学习、替代计量等方面,而国内聚焦在图书馆学类、大数据、知识服务、数字人文、人工智能等方面。数据科学可能是LIS领域国内外最具潜力的增长点,医疗健康、人工智能、科研评价指标与体系、数据素养以及数据管理等研究也有望快速增长。[创新/价值]从研究热点和学科增长点两个方面揭示了国内外LIS学科之间的差异,并对研究热点和学科增长点进行了预测,为学科未来规划提供参考。
[Purpose/Significance]This paper aims to summarize the evolution trajectory of disciplinary knowledge in the field of library and information science,as well as track and predict the research hotspots and growing points.[Design/Methodology]Based upon the data of core journals in the field of library and information science taken from WOS and CSSCI,the popularity of scientific topics was calculated and its status was evaluated with the use of TP-JIF model.Moreover,an evolution analysis was conducted on research hotspots and disciplinary growing points.Then a practical research was done in the field of LIS through the TPP-LSTM model.[Findings/Conclusion]According to the results,there are obvious differences in the amounts and focuses of research hotspots between China and other countries.Research hotspots of foreign countries mainly lie in social media,electronic health record,knowledge management,bibliometrics,machine learning,Altmetrics and so on,while the research hotspots obtained from the data of CSSCI are library science,big data,knowledge service,digital humanities,artificial intelligence and so on so forth.Data science appears to be the most promising growing point,while health care,artificial intelligence,scientific evaluation index and systems,digital literacy and data management tend to grow fast.[Originality/Value]This paper reveals the differences of research hotpots and growing points in the field of library and information science between China and other countries,and makes a prediction for the research hotspots and growing points,which could provide references for future planning.
作者
霍朝光
董克
司湘云
HUO Chaoguang;DONG Ke;SI Xiangyun
出处
《图书情报知识》
CSSCI
北大核心
2021年第2期35-47,57,共14页
Documentation,Information & Knowledge
基金
国家自然科学基金青年项目“基于广度学习的学科主题演化预测研究”(72004221)
中国博士后科学基金面上资助项目“基于动态知识图谱的学科主题演化预测研究”(2019M660908)的研究成果之一。
关键词
图书馆与信息科学
学科主题
演化分析
演化预测
热度指标
Library and information science
Scientific topic
Evolution analysis
Evolution prediction
Popularity index