期刊文献+

基于多尺度Retinex和暗通道的自适应图像去雾算法 被引量:18

Adaptive Image Defogging Algorithm Combining Multi-Scale Retinex and Dark Channel
原文传递
导出
摘要 针对暗通道先验算法处理大片天空区域存在复原图像的可视化效果较差和图像细节信息不丰富等问题,提出一种基于多尺度Retinex和暗通道的自适应图像去雾算法。采用Canny算子对亮度分量进行边缘检测并利用多尺度Retinex算法消除亮度分量,采用交叉双边滤波优化暗通道的先验理论获得粗略估计的透射率,采用四叉树子空间搜索法选取全局大气光值。为了消除图像中复原图像整体较暗以及无法显示细节信息的现象,使用二维伽马函数校正亮度值,最终得到复原后的去雾图像。实验结果表明,所提算法可以有效恢复有雾图像的细节信息,去雾较为彻底,整体平滑,色彩明亮度较好,图像清晰自然。 To address the problems of poor visualization of restored images and the insufficient image details obtained using dark channel prior algorithms in the processing of large areas of sky,we propose an adaptive image defogging algorithm based on multi-scale Retinex and dark channels.A Canny operator is used to detect the edge of the brightness component and a multi-scale Retinex algorithm is used to eliminate the brightness component.To optimize the prior theory of the dark channel and obtain a rough estimate of the transmittance,we use a cross-bilateral filter.We use the quadtree subspace search method to select the global atmospheric light value.To eliminate the overall darkness of the restored image and enable the display of detailed image information,a 2D gamma function is used to correct the brightness value and restore the defogged image.The experimental results show that the proposed algorithm can effectively restore detailed information in a foggy image to obtain images that feature thorough dehazing,overall smoothness,better color brightness,and a clear and natural appearance.
作者 彭静 薛奉金 苑玉彬 Peng Jing;Xue Fengjin;Yuan Yubin(School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou,Gansu 730070,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第4期109-117,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61861025)。
关键词 图像处理 RETINEX 暗通道先验算法 边缘保持 二维伽马函数 图像去雾 image processing Retinex dark channel prior algorithm edge preservation 2D gamma function image defogging
  • 相关文献

参考文献13

二级参考文献94

  • 1王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 2Finlayson G D, Funt B V, Barnard K. Color constancy under varying illumination[C]//Proceedings of the Fifth International Conference on Computer Vision. Washington DC, USA: IEEE Computer Society, 1995: 720 -725.
  • 3Semo S, Spitzer H. Color constancy: a biological model and its application for still and video images [J]. The Journal of the Pattern Recognition Society, 2002,35(8) : 1645 - 1659.
  • 4Land E H, McCann J J. Lightness and Retinex theory [J]. Journal of the Optical Society of America, 1971, 61(1):1-11.
  • 5Brainard D H, Wandell B A. Analysis of the Retinex theory of color vision[J]. Journal of the Optical Society of America, 1986,3(10):1651 - 1661.
  • 6Provenzi E, Gatta C, Fierro M, et al. A spatially variant white-patch and gray-world method for color image enhancement driven by local contrast[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(10) :1757 - 1770.
  • 7McCann J J. Lessons learned from Mondrians applied to real images and color gamuts [C] // Proceedings of IS&T/SID Seventh Color Imaging Conference: Color Science, Systems and Applications. Arizona, USA: The Society for Imaging Science and Technology, 1999: 1-8.
  • 8Funt B, Ciurea F, MeCann J. Retinex in matlab[C]// Proceedings of the Eighth Color Imaging Conference: Color Science, Systems and Applications. Arizona, USA: The Society for Imaging Science and Technology, 2000:112 - 121.
  • 9Funt B, Ciurea F. Control parameters for Retinex[J]. Proceedings of SPIE, 2001,4421(287) :287 - 290.
  • 10Jabson D J, Rahman Z, Woodell G A. Statistics of visual representation[J]. Proceedings of SPIE, 2002,4736 (25) :25 - 35.

共引文献222

同被引文献161

引证文献18

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部