期刊文献+

用于全市蜂窝流量预测的时空全连接卷积网络 被引量:2

Spatio-Temporal Fully Connected Convolutional Neural Networks for Citywide Cellular Prediction
下载PDF
导出
摘要 准确地预测城市蜂窝交通流量对未来大数据驱动下的智能蜂窝网络的管理和公共安全非常重要,同时也非常具有挑战。提出了一种基于深度学习的方法——ST-FCCNet来预测城市范围内的蜂窝流量。设计了一种STFCCNet单元结构,来捕捉城市中任意区域间的空间依赖。通过部署ST-FCCNet网络框架来对蜂窝流量的时间邻近性和周期性进行建模,以此来捕获时间依赖。结合外部因素(时间、天气、假期等)得到最终的预测结果。实验部分,通过实际的蜂窝数据集验证ST-FCCNet的有效性和现有的4种方法进行了对比。结果表明,ST-FCCNet的性能优于其他所有方法,与最优模型相比在预测精度上提高了7.50%到7.76%。 Accurate prediction of urban cellular traffic flow is very important for the management and public safety of smart cellular network driven by big data in the future,but it is also very challenging.This paper proposes a method based on deep learning—ST-FCCNet to predict cellular traffic in urban areas.A ST-FCCNet unit structure is designed to capture the spatial dependence between any regions in a city.The ST-FCCNet network framework is deployed to model the temporal closeness and periodicity of cellular traffic to capture temporal dependencies.The influence of external factors(time,weather,vacation,etc.)is combined to obtain the final forecast result.In the experimental part,this paper verifies the effectiveness of ST-FCCNet through actual cellular data sets and compared with the existing 4 methods.The results show that the performance of ST-FCCNet is better than all other methods,and the prediction accuracy is improved by 7.50%to 7.76%compared with the start-of-art.
作者 黄冬宜 杨兵 吴子豪 匡佳一 颜泽明 HUANG Dongyi;YANG Bing;WU Zihao;KUANG Jiayi;YAN Zeming(School of Software,Yunnan University,Kunming 650500,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第9期168-175,共8页 Computer Engineering and Applications
关键词 时空数据 深度学习 流量预测 卷积网络 spatio-temporal date deep learning cellular prediction convolutional neural networks
  • 相关文献

参考文献1

二级参考文献25

  • 1Zhang D,Guo B,Yu Z. The emergence of social and community intelligence[J].Computer,2011,(07):21-28.
  • 2Ratti C,Pulselli R M,Willians S,Frenchman D. Mobile Landscapes:using location data from cell phonnes for urban analysis[J].Envrionment and Planning B:Planning and Design,2006,(05):727-748.
  • 3Zhu H,Zhu Y,Li M,Ni L. SEER:metropolitan-scale traffic perception based on lossy sensory data[A].2009.217-225.
  • 4Calabrese F,Pereira F C,Lorenzo G D,Liu L,Ratti C. The geography of taste:analyzing cell-phone mobility and social[A].2010.22-37.
  • 5Girardin F,Blat J,Calabrese F,Fiote F,Ratti C. Digital Footprinting:uncovering tourists with user-generated content[J].IEEE Pervasive Computing,2008,(04):36-43.
  • 6Ahas R,Aasa A,Silm S,Tiru M. Mobile positioning data in tourism studies and monitoring:case study in Tartu,Estonia[A].2007.119-128.
  • 7Girardin F,Vaccari A,Gerber A,Biderman A Ratti C. Quantifying urban auractiveness from the distribution and density of digital footprints[J].International Journal of Spatial Data Infrastructures Research,2009.175-200.
  • 8González M,Hidalgo C,Barabasi A. Understanding individual human mobility patterns[J].Nature,2008.779-782.
  • 9McNamara L,Mascolo C,Capra L. Media sharing based on collocation prediction in urban transport[A].2008.58-69.
  • 10Froehlich J,Neumann J,Oliver N. Sensing and predicting the pulse of the city through shared bicycling[A].2009.1420-1426.

共引文献48

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部