期刊文献+

SymFuzz:一种复杂路径条件下的漏洞检测技术 被引量:4

SymFuzz:Vulnerability Detection Technology Under Complex Path Conditions
下载PDF
导出
摘要 当前漏洞检测技术可以实现对小规模程序的快速检测,但对大型或路径条件复杂的程序进行检测时其效率低下。为实现复杂路径条件下的漏洞快速检测,文中提出了一种复杂路径条件下的漏洞检测技术SymFuzz。SymFuzz将导向式模糊测试技术与选择符号执行技术相结合,通过导向式模糊测试技术对程序路径进行过滤,利用选择符号执行技术对可能触发漏洞的路径进行求解。该技术首先通过静态分析获取程序漏洞信息;然后使用导向式模糊测试技术,快速生成可以覆盖漏洞函数的测试用例;最后对漏洞函数内可以触发漏洞的路径进行符号执行,生成触发程序漏洞的测试用例。文中基于AFL与S2E等开源项目实现了SymFuzz的原型系统。实验结果表明,SymFuzz与现有的模糊测试技术相比,在复杂路径条件下的漏洞检测效果提高显著。 The current vulnerability detection technology can realize the rapid detection of small-scale programs,but it is inefficient when performing vulnerability detection on programs with large or complex path conditions.In order to achieve a rapid detection of vulnerabilities under complex path conditions,this paper proposes a vulnerability detection technology SymFuzz under complex path conditions.SymFuzz combines guided fuzzing technology and selected symbolic execution technology,filters program paths through guided fuzzing technology,and uses selected symbolic execution technology to solve paths that may trigger vulnerabilities.This technology first obtains program vulnerability information through static analysis.Then it uses guided fuzzy test technology to quickly generate test cases that can cover the vulnerability function.Finally,it executes symbolic execution on the path that can trigger the vulnerability within the vulnerability function to generate a test case that triggers the program vulnerability.This paper implements the prototype system of SymFuzz based on open source projects such as AFL and S2E.The comparison experiments show that SymFuzz significantly improves the effectiveness of vulnerability detection under complex path conditions compared with existing fuzzy testing techniques.
作者 李明磊 黄晖 陆余良 朱凯龙 LI Ming-lei;HUANG Hui;LU Yu-liang;ZHU Kai-long(College of Electronic Engineering,National University of Defense Technology,Hefei 230037,China;Anhui Key Laboratory of Cyberspace Security Situation Awareness and Evaluation,Hefei 230037,China)
出处 《计算机科学》 CSCD 北大核心 2021年第5期25-31,共7页 Computer Science
基金 国家重点研发计划项目(2017YFB0802905) 2020年度重庆市出版专项资金资助项目。
关键词 模糊测试 符号执行 静态分析 污点分析 漏洞检测 Fuzzy testing Symbol execution Static analysis Stain analysis Vulnerability detection
  • 相关文献

参考文献4

二级参考文献18

  • 1Oehlert P. Violating Assumptions with Fuzzing[J]. IEEE Security & Privacy, 2005, 3(2): 58-62.
  • 2Molnar D, Wagner D. Catchconv: Symbolic Execution and Runtime Type Inference for Integer Conversion Errors[Z]. [S. l.]: UC Berkeley EECS, 2007.
  • 3Godefroid P, Levin M, Molnar D. Automated Whitebox Fuzz Testing[Z]. [S. l.]: Microsoft Research, 2007.
  • 4King J C. Symbolic Execution and Program Testing[J]. Journal of the ACM, 1976, 19(7): 385-394.
  • 5Newsome J. Dynamic Taint Analysis: Automatic Detection, Analysis and Signature Generation of Exploit Attacks on Commodity Software[C]//Proceedings of the 12th Annual Network and Distributed System Security Symposium. San Diego, California, USA: [s. n.], 2005.
  • 6吴志勇,王红川,孙乐昌,潘祖烈,刘京菊.Fuzzing技术综述[J].计算机应用研究,2010,27(3):829-832. 被引量:30
  • 7黄强,曾庆凯.基于信息流策略的污点传播分析及动态验证[J].软件学报,2011,22(9):2036-2048. 被引量:21
  • 8诸葛建伟,陈力波,田繁,鲍由之,陆恂.基于类型的动态污点分析技术[J].清华大学学报(自然科学版),2012,52(10):1320-1328. 被引量:6
  • 9张玉清,方喆君,王凯,王志强,乐洪舟,刘奇旭,何远,李晓琦,杨刚.Android安全漏洞挖掘技术综述[J].计算机研究与发展,2015,52(10):2167-2177. 被引量:23
  • 10朱正欣,曾凡平,黄心依.二进制程序的动态符号化污点分析[J].计算机科学,2016,43(2):155-158. 被引量:6

共引文献67

同被引文献55

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部