期刊文献+

基于遗传算法和支持向量机的汽车行驶工况识别 被引量:4

Recognition of Vehicle Driving Conditions Based on Genetic Algorithm and Support Vector Machine
下载PDF
导出
摘要 为了提高支持向量机算法应用在行驶工况识别上的准确率,提出一种基于遗传算法优化策略。基于主成分分析理论对实车采集的4种典型城市工况载荷谱数据提取特征参数,并以此作为识别模型的输入参数,然后通过网格搜索法确定参数寻优空间,再由遗传算法在此范围内精确寻优。仿真试验结果显示,运用这种基于遗传算法优化支持向量机建立的识别模型分类识别精确度比之前提高了3.44%。 In order to improve the accuracy of the support vector machine algorithm applied to the driving condition recognition,an optimization strategy of genetic algorithm was put forward.Based on the principal component analysis theory,the characteristic parameters were extracted from the load spectrum data collected in 4 typical urban working conditions and used as the input parameters of the recognition model.Then the parameter optimization space was determined by the grid search method and the optimal value within the range could be found by the genetic algorithm.The simulation experiment results show that the recognition accuracy can improve by 3.44%based on the recognition model through the optimization of support vector machine with the genetic algorithm.
作者 董小瑞 武雅文 张志文 李晓杰 DONG Xiaorui;WU Yawen;ZHANG Zhiwen;LI Xiaojie(School of Energy and Power Engineering,North University of China,Taiyuan 030051,China)
出处 《车用发动机》 北大核心 2021年第2期13-17,共5页 Vehicle Engine
基金 山西省应用基础研究计划(201901D211208)。
关键词 行驶工况 识别 遗传算法 支持向量机 参数优化 driving condition recognition genetic algorithm support vector machine parameter optimization
  • 相关文献

参考文献8

二级参考文献71

  • 1舒歌群,王养军,卫海桥,王刚志.汽车车内噪声声音品质的测试与评价[J].内燃机学报,2007,25(1):77-83. 被引量:29
  • 2Ericsson E.Independent Driving Pattern Factors andTheir Influence on Fuel-use and Exhaust Emission[J].Transportation Research,Part D,2001,6:325-341.
  • 3Koot M,Kessets J T B A,de Jager B,et al.EnergyManagement Strategies for Vehicular Electric PowerSystems[J].IEEE Transactions on Vehicular Tech-nology,2005,54(3):771-782.
  • 4Perez L,Bossio G R,Moitre D,et al.Optimization ofPower Management in an Hybrid Electric VehicleUsing Dynamic Programming[J].Mathematics andComputers in Simulation,2006,73:244-254.
  • 5Oh K,Min Junhong,Chol Donghoon,et al.Optimi-zation of Control Strategy for a Single-shaft Paral-lel Hybrid Electric Vehicle[J].Proc.IMechE,PartD:J.Automobile Engineering,2007,221:555-565.
  • 6Paganelli G,Guerra T M,Santin J J,et al.Simula-tion and Assessment of Power Control Strategies fora Parallel Hybrid Car[J].Proceedings of the Institu-tion of Mechanical Enineers,Part D:Journal of Au-tomobile Engineering,2000,214(7):705-717.
  • 7Kisacikoglu M C,Uzunoglu M,Alam M S.LoadSharing Using Fuzzy Logic Control in a Fuel Cell/Ultracapacitor Hybrid Vehicle[J].InternationalJournal of Hydrogen Energy,2009,34:1497-1507.
  • 8Moreno J,Ortuzar M E,Dixon J W.Energy-man-agement System for a Hybrid Electric Vehicle,Using Ultracapacitors and Neural Networks[J].IEEE Transactions on Industrial Electronics,2006,53(2):614-623.
  • 9Lin Jie,Niemeier D A.Regional Driving Characteris-tics,Regional Driving Cycles[J].Transportation Re-search,Part D,2003,8:325-341.
  • 10Won Jong-seob.Intelligent Energy ManagementAgent for Aparallel Hybrid Vehicle[D].CollegeStation,Texas:Texas A&M University,2003.

共引文献93

同被引文献19

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部