期刊文献+

基于遗忘函数的均值贝叶斯个性化排序算法研究 被引量:3

Research on forgetting function-based mean Bayesian personalized ranking algorithm
下载PDF
导出
摘要 针对贝叶斯个性化排序算法未能充分应用用户的行为信息,导致算法在数据稀疏情况下推荐性能以及鲁棒性均大幅度降低的问题,提出了均值贝叶斯个性化排序(MBPR)算法,来进一步挖掘用户对隐式反馈信息的偏好关系。考虑到用户兴趣随时间变化的特征,又将遗忘函数引入MBPR算法中。该算法首先对用户的历史评分记录进行预处理;然后根据用户的评分信息对项目进行正负反馈的划分,对每名用户进行个性化建模,挖掘用户对未参与项目的喜好程度,生成推荐列表。为验证提出算法的推荐性能,在公开数据集MovieLens及Yahoo上进行分析和对比实验。实验结果表明该算法的推荐性能及鲁棒性较对比算法均有显著提高。 To address the problem that the Bayesian personalized sorting algorithm fails to fully apply the user’s behavior information,which leads to a significant reduction in recommendation performance and robustness under sparse data conditions,this paper proposed the mean Bayesian personalized ranking(MBPR)algorithm to further explore the user’s preference for implicit feedback information.Considering the characteristics of user interest changing over time,the MBPR algorithm introduced the forgetting function.The algorithm firstly preprocessed the historical rating records of users,then divided the items into positive and negative feedback based on the rating information of users,personalized the modeling for each user,explored the users’preferences for unengaged items,and generated a list of recommendations.To verify the recommendation performance of the proposed algorithm,this paper conducted analysis and comparison experiments on the public data sets MovieLens and Yahoo.Experimental results show that the recommendation performance and robustness of the proposed algorithm are significantly improved over the comparison algorithm.
作者 申艳梅 姜冰倩 敖山 刘志中 Shen Yanmei;Jiang Bingqian;Ao Shan;Liu Zhizhong(School of Computer Science&Technology,Henan Polytechnic University,Jiaozuo Henan 454003,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第5期1350-1354,1370,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61872126)。
关键词 贝叶斯个性化排序算法 推荐系统 鲁棒性 遗忘函数 Bayesian personalized ranking algorithm recommender system robustness forgetting function
  • 相关文献

参考文献4

二级参考文献32

  • 1Weng J, Lim E, Jiang J, et al. TwitterRank: finding topicsensitive influential twitterers[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM '10). New York, NY, USA: ACM, 2010: 261-270.
  • 2Cha M, Haddadi H, Benevenuto F, et al. Measuring user influence in Twitter: the million follower fallacy[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM 2010), 2010: 10-17.
  • 3Qazvinian v, Rosengren E, Radev D, et al. Rumor has it:identifying misinformation in microblogs[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP ' 11). Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 1589-1599.
  • 4Grove F, Sen S. TwitAg: a multi-agent feature selection and recommendation framework for Twitter[C]//LNCS 7057: Proceedings of the 13th International Conference on Principles and Practice of Multi-Agent Systems (PRIMA '10). Berlin, Heidelberg: Springer-Verlag, 2012: 394-397.
  • 5Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI '09). Arlington, Virginia, USA: AUAI Press, 2009: 452-461.
  • 6Hannon J, McCarthy K, Smyth B. Finding useful users on Twitter: twittomender the followee recommender[C]// LNCS 6611: Proceedings of the 33rd European Conference on Information Retrieval (ECIR 2011). Berlin, Heidelberg: Springer-Verlag, 2011: 784-787.
  • 7Hannon J, Bennett M, Smyth B. Recommending Twitter users to follow using content and collaborative filtering approaches[C]//Proceedings of the 4th ACM Conference on Recommender Systems (RecSys ' 10). New York, NY, USA: ACM, 2010: 199-206.
  • 8Zangerle E, Gassier W, Specht G. Using tag recommendations to homogenize folksonomies in microblogging envi- ronments[C]//Proceedings of the 3rd International Conference on Social Informatics (Soclnfo 2011), 2011: 113-126.
  • 9Phelan O, McCarthy K, Smyth B. Using Twitter to recommend real-time topical news[C]//Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys '09).New York, NY, USA: ACM, 2009: 385-388.
  • 10Phelan O, McCarthy K, Bennett M, et al. Terms of a featurecontent-based news recommendation and discovery using Twitter[C]//Proceedings of the 33rd European Conference on Advances in Information Retrieval (ECIR ' 11). Berlin, Heidelberg: Springer-Verlag, 2011: 448-459.

共引文献136

同被引文献15

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部