期刊文献+

基于动态最低水平线法和蚁群算法的排样优化 被引量:7

LAYOUT OPTIMIZATION BASED ON DYNAMIC LOWEST HORIZONTAL LINE METHOD AND ANT COLONY ALGORITHM
下载PDF
导出
摘要 为节约原材料,同时弥补最低水平线法易产生材料空余的缺点,提出动态最低水平线法。通过在最低水平线法基础上增加旋转、比较和不唯一最低水平线设定,能最大限度减少材料空余和控制排样高度。采用蚁群算法配合动态最低水平线法,分别计算矩形的排样序列和排放位置。通过对SolidWorks二次开发实现矩形排样问题的求解和仿真。多组对比测试结果证明,该算法进一步缩小了排样高度差,总体缩小了约25%至46%,降低了排样高度,从而实现了材料节约,平衡了求解时间。 In order to save raw materials and to compensate for the shortcoming of bringing more space of the lowest horizontal line method,the dynamic lowest horizontal line method is proposed.By adding rotation,comparison,and non-unique lowest horizontal line settings based on the lowest horizontal line method,it can greatly reduce spaces and control the height of layout.The ant colony algorithm and the dynamic lowest horizontal line method were used to calculate the rectangular layout sequence and discharge position respectively.The rectangular layout problem solving and simulation were realized through the secondary development of SolidWorks.The results of multiple sets of comparison tests prove that our algorithm reduces the height difference of the layout,and the overall reduction is about 25%to 46%,which reduces the height of the layout,thereby achieving material saving and balancing the solution time.
作者 张娜 赵罘 龚堰珏 刘玲玲 Zhang Na;Zhao Fu;Gong Yanjue;Liu Lingling(College of Materials and Mechanical Engineering,Beijing Technology and Business University,Beijing 100048,China)
出处 《计算机应用与软件》 北大核心 2021年第5期268-273,共6页 Computer Applications and Software
基金 北京市教委科研计划一般项目(KM201810011003)。
关键词 矩形排样 动态最低水平线法 蚁群算法 SOLIDWORKS二次开发 Rectangular layout Dynamic lowest horizontal line method Ant colony algorithm SolidWorks secondary development
  • 相关文献

参考文献6

二级参考文献38

  • 1王罡,彭国华,余迁.模拟退火算法在图片优化排版中的应用[J].西南民族大学学报(自然科学版),2006,32(3):586-590. 被引量:3
  • 2徐凯,张裕中.CAD二次开发技术(Ⅰ)[J].包装与食品机械,2004,22(1):15-17. 被引量:14
  • 3杜民.基于VisualC++对SolidWorks二次开发技术研究[J].科学技术与工程,2006,6(10):1425-1427. 被引量:6
  • 4Jakobs S. On the genetic algorithms for the packing of polygons [J].European Journal of Operational Research, 1996, 88(1): 165-181
  • 5Chaaelle B. The Bottom-left bin packing heuristic: an efficient implementation [J]. IEEE Transactions on Computers, 1983, C32(8): 697-707
  • 6Liu D Q, Teng H F. An improved BL algorithm for genetic algorithm of the orthogonal packing of rectangles [J]. European Journal of Operational Research, 1999, 112 ( 2 ):413-420
  • 7Yeung L H W, Tang W K S. A hybrid genetic approach for garment cutting in the clothing industry [J]. IEEE Transactions on Industrial Electronics, 2003, 50 (3) : 449 - 455
  • 8Tang K W, Tang W K S. Metal cutting with hybrid genetic algorithm [C] //Proceedings of the 3rd IEEE International Conference Industrial Informatics, Perth, 2005:735-739
  • 9Faina L. An application of simulated annealing to cutting stock problem [J].European Journal of Operational Research, 1999, 114(3):542-556
  • 10Hopper E, Turton B C H. An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem[J]. European Journal of Operational Research, 2001, 128(1): 34-57

共引文献154

同被引文献51

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部