摘要
提出了具有路段容量约束和一般多项式路段阻抗函数的广义系统最优(SO)交通分配模型,定义了广义系统最优交通分配。本文中模型将传统的凸SO模型扩展到一般情况。广义系统最优交通分配问题的非凸性使得传统优化方法难以得到全局最优解。本文提出一种矩半定规划(MSDP)凸松弛方法获得了广义SO交通分配问题的全局最优解。通过两个数值例子来说明所提出的模型和求解方法。数值结果表明,MSDP方法能直接求解经典凸系统最优交通分配问题,也能处理具有路段容量约束和一般多项式路段阻抗函数的广义系统最优交通分配问题。
A generalized system-optimal(SO)traffic assignment model with link capacity constraints and and general polynomial link impedance functions was proposed to define optimal traffic assignment.The study extended the traditional convex SO model to general cases.The nonconvexity of many general system-optimal traffic assignment problems makes it difficult to obatin the global optimum through traditional optimization methods.To this end,this paper proposed the Moment Semidefinite Programming(MSDP)relaxation technique which can get the global optimum for general system optimal traffic assignment problems.Two numerical examples were used to illustrate the proposed model and solution method.Numerical results show that the MSDP method can solve the classical convex SO traffic assignment problem directly,and can also deal with the general system optimal traffic assignment with link capacity constraints and general polynomial link impedance functions.
作者
俞礼军
YU Lijun(School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640,Guangdong,China)
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第4期140-148,共9页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(61603140)。
关键词
城市交通
系统最优
容量限制交通分配
多项式阻抗函数
矩理论
半定规划
urban traffic
system-optimal
capacitated traffic assignment
polynomial link impedance function
theory of moments
semidefinite programming(SDP)