摘要
精确的风速风向数据是输电线路参数设计的重要依据。文章基于最大熵原理,提出了风速风向的联合概率密度函数建模方法。首先,从最优最大熵原理出发,推导得到风速的最大熵概率密度函数;其次,基于谐波函数、混合米塞斯分布函数对风向概率进行拟合,获得高阶米塞斯概率密度函数;再次,在上述基础上,基于最大熵原理,推导得到风速风向的联合概率密度函数;最后,通过该模型计算不同风向角度下的风速,数值符合实际情况,并与传统方法相比显示了优越性。
Accurate wind speed and direction data is an important basis for the parameter design of transmission lines,and is one of the main causes of transmission line overload,broken line and tower failure.Based on the principle of maximum entropy,a joint probability density function modeling method of wind speed and direction is proposed.Firstly,the maximum entropy probability density function of wind speed is derived from the optimal maximum entropy principle;secondly,the wind direction probability is fitted based on harmonic function and mixed Mises distribution function to obtain higher-order Mises probability function;thirdly,on the basis of the above,based on the maximum entropy principle,the joint probability density function of wind speed and direction is derived;finally,it is proved that the method is feasible.The wind speed calculated by the model under different wind directions is in line with the actual situation,and shows superiority compared with the traditional method.
作者
陈友慧
王淼
刘岩
高阳
Chen Youhui;Wang Miao;Liu Yan;Gao Yang(State Grid Liaoning Electric Power Company Limited Economic Research Institute Shenyang,Shenyang 110015,China;Shenyang Institute of Engineering,Electric Power College,Shenyang 110015,China)
出处
《可再生能源》
CAS
CSCD
北大核心
2021年第5期699-704,共6页
Renewable Energy Resources
基金
国网辽宁省电力有限公司科技项目(2020YF-03)。
关键词
风速
风向
联合概率密度
最大熵
输电线路
wind speed
wind direction
joint probability density
maximum entropy
transmission line