期刊文献+

一种基于迁移学习的遥测数据异常检测方法 被引量:11

An Anomaly Detection Method of Telemetry Data by Means of Transfer Learning
下载PDF
导出
摘要 为解决卫星遥测数据异常检测面临的数据不平衡且缺乏有标签样本的问题,提出一种基于一维卷积神经网络(1dCNN)迁移学习的异常检测方法。首先利用源域卫星的遥测数据对1dCNN进行预训练,使得模型的卷积层具有卫星状态特征的提取能力;然后将训练好的模型迁移到缺乏标签数据的目标域卫星中;利用目标域有标签样本对预训练模型进行微调,从而实现了对目标域测试集样本的异常检测。为了使1dCNN能够适应遥测数据样本的不平衡性,引入了代价敏感训练策略,建立动态损失函数,从而提升代价敏感一维卷积神经网络(cs-1dCNN)对于异常样本的识别能力。以某两个卫星的电源分系统遥测数据进行了验证,实验结果表明该异常检测迁移方法具有较好的有效性和鲁棒性。 In order to solve the problems of imbalanced data and lack of labeled samples faced by satellite telemetry data anomaly detection,a method of anomaly detection based on one-dimensional convolutional neural network(1dCNN)transfer learning is proposed.Firstly,the source domain satellite data are used to pre-train the 1dCNN to make the model’s convolutional layer have satellite state feature extraction capabilities;then the pre-trained model is transferred to the target domain satellite lacking labeled data;finally,the labeled samples of the target domain are used to fine-tune the pre-trained model so as to achieve anomaly detection of the samples of the target domain test set.In order to make the 1dCNN adapt to the imbalance of satellite telemetry data samples,a cost-sensitive training strategy is introduced.By establishing a dynamic loss function,the cs-1dCNN can improve the capacity of recognizing the abnormal samples.Experiments with the power subsystem data of two anonymous satellites verify the effectiveness and robustness of the proposed anomaly detection transfer method.
作者 陈俊夫 皮德常 张强 CHEN Jun-fu;PI De-chang;ZHANG Qiang(College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Beijing Aerospace Control Center,Beijing 100094,China)
出处 《宇航学报》 EI CAS CSCD 北大核心 2021年第4期522-530,共9页 Journal of Astronautics
基金 国家自然科学基金(U1433116) 南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20191603)。
关键词 卫星遥测数据 迁移学习 深度学习 异常检测 Satellite telemetry data Transfer learning Deep learning Anomaly detection
  • 相关文献

参考文献4

二级参考文献30

  • 1高黎,沙基昌.分布式卫星系统自主运行技术研究进展[J].舰船电子工程,2007,27(1):4-7. 被引量:2
  • 2刘小勇,樊思齐.自适应卡尔曼滤波在航空发动机参数估计中的应用[J].航空动力学报,1995,10(3):304-306. 被引量:3
  • 3李文峰,王永生,杨纪明,王苏.航空发动机测试信号噪声特性分析[J].航空动力学报,2005,20(5):900-904. 被引量:10
  • 4Schetter T,Campell M,Surka D. Multiple agent-based autonomy for satellite constellations[J].Artificial Intelligence,2003,(01):147-180.
  • 5Yan F,Li M J. A new approach to fault diagnosis for satellite control systems based on machine learning[J].Current Advances in Materials and Processes,2012.1070-1076.
  • 6Wu W J,Huang D G,Dong Z. Research on a fuult diagnosis method for aero-engine based on improved SVM and information fusion[J].Applied Mechanics and Material,2011.811-816.
  • 7Wang D,Feng W Q,Li J W. A hybrid and hierarchy medeling approach to model-based diagnosis[J].Electrical Engineering and Control,2011.173-180.
  • 8Thumati B T,Feinstein M A,Fonda J W. An online model-based fault diagnosis scheme for HVAC systems[A].Seattle,USA,2011.
  • 9De Kleer J,Williams B C. Diagnosing multiple faults[J].Artificial Intelligence,1987,(01):97-130.
  • 10Reiter R. A theory of diagnosis from first principles[J].Artificial Intelligence,1987,(01):57-95.

共引文献31

同被引文献110

引证文献11

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部