摘要
作为半球谐振陀螺的核心元件,半球谐振子的加工水平直接决定了陀螺的性能优劣。然而,目前尚缺乏有效方法来对半球谐振子的性能进行量化评估。针对这一问题,提出一种利用最小均方(LMS)算法来对半球谐振子的刚度各向异性Δω、刚度失准角θ__(ω)、阻尼各向异性Δ(1/τ)和阻尼失准角θ_(τ)这四种特征参数进行辨识的方法。首先,根据非理想谐振子的正交误差方程,在外界恒定转速Ω的激励下,获得仅包含Δω和θ_(ω)信息的陀螺正交分量q的数据集;其次,根据非理想谐振子的驻波方位角误差方程,在外界恒定转速Ω的激励下,获得仅包含Δ(1/τ)和θ_(τ)信息的驻波方位角θ的数据集;然后,根据正交误差方程和驻波方位角误差方程构建基于LMS算法的特征参数辨识模型;最后,利用Simulink程序仿真验证所提出辨识方法的有效性。仿真结果表明:半球谐振子的四个特征参数全部在8s以内完成辨识,并且全部收敛于参数的设定值。该方法不仅可以实现对半球谐振子的加工水平进行量化评估,而且可以为半球谐振陀螺的误差分析与补偿提供理论依据。
As the key component of hemispherical resonator gyro(HRG),the processing level of hemispherical shell resonator(HSR)determines the performance of gyro.However,the performance of resonator cannot be evaluated quantitatively by an effective method recently.To deal the problem,a method based on the least mean square(LMS)algorithm is proposed to identify anisotropic parameters of resonator which includes anisotropy of stiffnessΔ_(ω),primary axis of stiffnessθ_(ω),anisotropy of dampingΔ(1/τ)and primary axis of dampingθ_(τ).Firstly,according to the quadrature error equation of nonideal resonator,a dataset of gyro quadrature component q,which contains bothΔωandθ_(ω),is obtained under the excitation of constant external rotationΩ.Besides,according to the standing wave azimuth error equation of nonideal resonator,a dataset of standing wave azimuthθ,which contains bothΔ(1/τ)andθ_(τ),is obtained under the excitation of constant external rotationΩ.And then,the characteristic parameters identification model based on LMS algorithm is constructed according to quadrature error equation and standing wave azimuth error equation.Finally,the effectiveness of identification method is verified by Simulink program simulation.The simulation results indicate that all the four characteristic parameters of resonator can be identified within 8 s and converge to the preset values accurately.The proposed method can not only quantitatively evaluate the processing level of resonator,but also provide a foundation for error analysis and error compensation of HRG theoretically.
作者
郜中星
徐睿东
张勇刚
GAO Zhongxing;XU Ruidong;ZHANG Yonggang(College of Physics and Optoelectronic Engineering,Harbin Engineering University,Harbin 150001,China;College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150001,China)
出处
《中国惯性技术学报》
EI
CSCD
北大核心
2021年第1期101-106,共6页
Journal of Chinese Inertial Technology
基金
国家自然科学基金(61805055)
中央高校基本科研业务费(3072021CF2503)。