期刊文献+

基于5G技术的无人机拍摄速率自动校准方法

Automatic Calibration Method of UAV Shooting Rate Based on 5G Technology
下载PDF
导出
摘要 为了提高无人机拍摄速率的控制精度,提出基于5G技术的无人机拍摄速率自动校准方法。识别无人机拍摄下的视觉信息,采用视频帧差补偿控制方法进行无人机拍摄的图像像素特征分集和误差补偿设计,提取无人机拍摄图像的灰度像素特征分量,通过关联规则特征参数融合的方法,分析无人机拍摄图像的帧跟踪识别模型,控制无人机拍摄的图像信息传输;根据5G通信的信道差异性特征量进行负载均衡调度,建立无人机拍摄的速率参数估计模型;采用最大似然估计和无人机航拍运动视频跟踪补偿控制的方法,实现无人机拍摄速率自动校准。仿真结果表明,采用该方法进行无人机拍摄速率自动校准的精度较高,提高了无人机拍摄的自动校准水平。 In order to improve the control accuracy of UAV shooting rate,an automatic calibration method of UAV shooting rate based on 5G technology is proposed.The visual information captured by UAV is identified.The pixel feature diversity and error compensation of UAV captured image are designed by using video frame difference compensation control method.The gray pixel feature components of UAV captured image are extracted.The frame tracking recognition model of UAV captured image is constructed by fusing the feature parameters of association rules,so as to control the transmission of image information captured by UAV According to the channel difference characteristics of 5G communication,load balancing scheduling is carried out to establish the rate parameter estimation model of UAV shooting;the maximum likelihood estimation and tracking compensation control method of UAV aerial photography motion video are adopted to realize the automatic calibration of UAV shooting rate.The simulation results show that the accuracy of automatic calibration of UAV shooting rate is high,and the automatic calibration level of UAV shooting is improved.
作者 陈洪亮 纪姗姗 李志雷 孙同展 沈宏亮 CHEN Hong-liang;JI Shan-shan;LI Zhi-lei;SUN Tong-zhan;SHEN Hong-liang(Stae Grid Hebei Electric Power Co.,Ltd.,Xiongan New Area Electric Power Supply Company,Baoding 071800,China;Tianjin Richsoft Electrjc Power Information Technology Co.,Ltd.,Tianjin 300000,China;Hebei Electric Power Co.,Ltd.,Shijiazhuang 050000,China)
出处 《自动化与仪表》 2021年第5期53-56,61,共5页 Automation & Instrumentation
基金 国网河北省电力有限公司科技项目(B304XQ200010)。
关键词 5G技术 无人机 拍摄速率 自动校准 参数估计 5G technology unmanned aerial vehicle shooting rate automatic calibration parameter estimation
  • 相关文献

参考文献14

二级参考文献141

  • 1LI Chang-chun1, ZHANG Guang-sheng1, LEI Tian-jie2, 3, GONG A-du2, 3 1. School of Surveying & Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China,2. Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China,3. Ministry of Civil Affairs/Ministry of Education of China Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China.Quick image-processing method of UAV without control points data in earthquake disaster area[J].中国有色金属学会会刊:英文版,2011,21(S3):523-528. 被引量:15
  • 2SZELISKI R. Video mosaics for virtual environments [J]. IEEE Computer Graphics and Applications, 1996, 16(2): 22-30.
  • 3LOWE D G. Object recognition from local scale-invariant features[C]. IEEE International Conference on Computer Vision, Kerkyra, Corfu, Greece, 1999, 2: 1150-1157.
  • 4LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004 60(2): 91-110.
  • 5BROWN M and LOWED G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73.
  • 6BAY H, TUYTELAARS T, and VAN Gool L. Surf: Speeded Up Robust Features[C]. European Conference on Computer Vision, Graz, Austria, 2006:404 417.
  • 7SILPA-ANAN C and HARTLEY R. Optimized KD-trees for fast image descriptor matching[C]. IEEE Conference oil Computer Vision and Pattern Recognition, Anchorage, AK, USA. 2008: 1-8.
  • 8MUJA M and LOWED G. Fast approximate nearest neighbors with automatic algorithm configuration[C]. The International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Lisbon, Portugal, 2009: 331-340.
  • 9CALONDER M, LEPETIT V, STRECHA C, et al. Brief: binary robust independent elementary features]C]. European Conference on Computer Vision, Hersonissos, Heraklion, Crete, Greece, 2010: 778-792.
  • 10RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 2564-2571.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部