期刊文献+

面向智能船舶的水面小目标检测算法 被引量:4

Detection algorithm for small objects on water surface for intelligent ships
下载PDF
导出
摘要 针对智能船舶中基于视觉传感器的水面小目标识别具有识别区域分辨率低、图像模糊、信噪比低等问题,提出了一种新的基于卷积神经网络的水面小目标检测算法——自注意力特征融合检测算法.首先,为了提高视觉信息处理的效率与准确性,在网络模型中引入了自注意力模块,更多关注小目标的细节信息.其次,在网络模型中采用了结构化的特征融合算法,通过多尺度语义信息融合提升对小目标的检测性能.最后,为了解决目标检测的定位问题,在smooth L1损失函数的基础上设计了一种大梯度定位损失函数.通过与传统的Faster R-CNN目标检测算法在船舶数据库上进行仿真对比,验证了所提算法在解决水面小目标检测问题上的有效性. Aiming at the difficulty in recognizing small objects on the water surface based on vision sensors in intelligent ships,which are characterized by low resolution of recognition area,blurred image and low signal-to-noise ratio,a new detection algorithm,self-attention feature fusion detection algorithm is proposed for small objects on the water surface based on convolutional neural network.Firstly,in order to improve the efficiency and accuracy of visual information processing,the self-attention module is introduced into the network model to pay more attention to the details of small targets.Secondly,a structured feature fusion algorithm is adopted in the network model to improve the detection performance of small targets through multi-scale semantic information fusion.Finally,in order to solve the localization problem of object detection,a large gradient positioning loss function is designed based on the smooth L1 loss function.Compared with the traditional Faster R-CNN target detection algorithm in the ship database simulation,the effectiveness of the proposed algorithm in solving the problem of small object detection on the water surface is verified.
作者 梁月翔 冯辉 徐海祥 LIANG Yuexiang;FENG Hui;XU Haixiang(School of Transportation, Wuhan University of Technology, Wuhan 430070, China;Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China)
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2021年第3期255-264,共10页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(51879210,51979210) 中央高校基本科研业务费专项资金资助项目(2019Ⅲ040,2019Ⅲ132CG).
关键词 智能船舶 目标检测 卷积神经网络 intelligent ship object detection convolutional neural network
  • 相关文献

参考文献4

二级参考文献22

  • 1Tsotos J,Culhane S,Wai W,et al. Modeling visual attention via selective tuning[J]. Artificial Intelligence, 1995,78:507-545.
  • 2Itti L,Koch C,Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20 (11):1 254-1 259.
  • 3Ma Y F,Zhang H J. Contrast-based image attention analysis by using fuzzy growing[A]. Proceedings of the 11th ACM International Conference on Multimedia[C]. Berkeley, CA, USA: ACM, 2003. 374 - 381.
  • 4Sun Y, Fisher R. Object-based visual attention for computer vision[J]. Artificial Intelligence, 2003,146 (1): 77 -123.
  • 5Itti L,Gold C,Koch C. Visual attention and target detection in cluttered natural scenes[J]. Optical Engineering,2001,40(9):1 784-1 793.
  • 6Gonzalez R C,Woods R,Eddins S. Digital Image Processing Using MATLAB[M]. USA: Prentice Hall,2003.
  • 7张风丽,张磊,吴炳方.欧盟船舶遥感探测技术与系统研究的进展[J].遥感学报,2007,11(4):552-562. 被引量:24
  • 8张菁,沈兰荪,David Dagan Feng.基于视觉感知的图像检索的研究[J].电子学报,2008,36(3):494-499. 被引量:32
  • 9唐沐恩,林挺强,文贡坚.遥感图像中舰船检测方法综述[J].计算机应用研究,2011,28(1):29-36. 被引量:46
  • 10王卫卫,席灯炎,杨塨鹏,周丽娟.利用结构纹理分解的海洋舰船目标检测[J].西安电子科技大学学报,2012,39(4):131-137. 被引量:21

共引文献96

同被引文献29

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部