期刊文献+

基于物联网流量指纹的安全威胁轻量级检测方法 被引量:1

Lightweight Detection Method for Security Threat Based on Internet of Things Traffic Fingerprints
下载PDF
导出
摘要 针对传统物联网深度包流量检测效率过低问题,提出一种基于物联网流量指纹的安全威胁轻量级检测方法。首先采用数据重构的方法获取流量时空数据,然后采用深度学习的方法提取流量数据时空特征(即流量数据指纹),最后采用基于蚁群算法优化的BP神经网络进行流量异常检测和识别。实验证明,使用该算法进行流量异常检测能够避免检测模型陷入局部最优,能够显著提高物联网威胁检测精度。 Aiming at the low efficiency of traditional deep packet traffic detection in Internet of Things(IoT),this paper proposes a lightweight detection method for security threat based on Internet of things traffic fingerprints.Firstly,the spatiotemporal data of traffic are obtained by data reconstruction method.Then,a deep learning method is used to extract the spatiotemporal characteristics of traffic data(i.e.,traffic data fingerprint).Finally,a BP neural network optimized by ant colony algorithm is used to detect and identify traffic anomaly.Experiments show that the proposed algorithm for traffic anomaly detection prevents the detection model from falling into a local optimum,and significantly improves the accuracy of IoT threat detection.
作者 赵研 ZHAO Yan(Digital Guangdong Network Construction Co.,Ltd.,Guangzhou 510030,China)
出处 《移动通信》 2021年第3期62-66,共5页 Mobile Communications
关键词 安全威胁 轻量级检测 流量指纹 蚁群算法 BP神经网络 security threat lightweight detection traffic fingerprint ant colony algorithm BP neural network
  • 相关文献

参考文献2

二级参考文献33

  • 1Medaglia C M, Serbanati A. An overview of privacy and security issues in the Internet of things [C]// Proceedings of the 20th Tyrrhenian Workshop on Digital Communications. Sardinia, Italy: Springer, 2010:389-395.
  • 2Leusse P, Periorellis P, Dimitrakos T. Self managed security cell, a security model for the Internet of Things and services [C]// Proceedings of the 1st International Conference on Advances in Future Internet. Athens/Glyfada, Greece: IEEE, 2009: 47-52.
  • 3Hamad F, Smalov L, James A. Energy-aware security in M commerce and the Internet of Things[J].IETE Technical review, 2009, 26(5) : 357 - 362.
  • 4Juels A. RFID security and privacy: A research survey [J]. IEEE Journal on Selected Areas in Communication, 2006, 24(2) :381 - 394.
  • 5Weber R H. Internet of Things New security and privacy challenges [J]. Computer Law & Security Reviezo, 2010, 26(1): 23-30.
  • 6CHEN Xiangqian, Makki K, Yen K, et al. Sensor network security: A survey [J]. IEEE communications Surveys Tutorials, 2009, 11(2) : 52 - 73.
  • 7Asrar I. Could sexy space be the birth of the sms botnet? [Z/OL]. (2010-10-16), http: //www. symantec, corn/connect/ blogs/could-sexy-space-be-birth-sms-botnet.
  • 8Karygiannis T, Eydt B, Barber B, et al. Guidance for securing radio frequency identification (RFID) systems [Z/OL]. (2010-10-16), http: //www. google, com. hk/url? sa = t&source- web&cd = 1&ved -- 0CCIQFjAA&url = http%3A%2F%2Fwww, rfidsecurityalliance, org%2Fdocs %2FDraft SP800-98%2520-%2520Guidance%2520for%2520 Securing%2520RFID. pdf&ret = j%q -- XSBlaN5D X 09Guidance% 20for% 20Securing%20Radio% 20Frequency %20Identification%20(RFID) %20Systems. &ei = vxhwTqbYLa 64iAfk2LCtCQ&usg = AFQjCNGoB6IJZ12KcFBUkWh_ 5PWGkOQSpg&cad- rjt.
  • 9Eschenauer L, Gligor V. A key management scheme for distributed sensor networks [C]// Proceedings of the 9th ACM Conference on Computer and Communications Security. New York, USA: Association for Computing Machinery, 2002, 41 - 47.
  • 10ZHANG Wensheng, Tran M. A random perturbation-based scheme for pairwise key establishment in sensor networks [C]// Proceedings of the 8th ACM International Symposium on Mobile ad Hoc Networking and Computing. New York, USA: Association for Computing Machinery, 2007: 90 - 99.

共引文献97

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部