期刊文献+

基于DBSCAN和iForest算法的船舶异常行为分析 被引量:7

Analysis of Vessel Abnormal Behavior Based on DBSCAN and iForest Algorithms
下载PDF
导出
摘要 为更好地从船舶自动识别系统(AIS)数据中挖掘信息,科学地感知水上交通态势,针对异常船舶进行识别,论文提出一种基于改进的密度空间聚类算法(DBSCAN),结合孤立森林算法(Isolation Forest,iForest)在包含大量不相关船舶分布数据中选取数据集内在分布规律和聚类效果的变化来发现异常;同时针对船舶位置(LAT,LON)及对地航速(SOG)进行聚类,将速度与船舶密度结合,对船速分簇后结合地理领域知识和iForest构建的异常边界,更好地发现船舶异常行为。以北部湾船舶AIS数据为例,应用该文的算法,发现异常并进行分析,可以简化异常识别监控方式,为海事检测部门提供良好的船舶监控环境,降低监控人员的工作强度,为航道建设部门,应急处置部门及海事监管部门等提供合理建议。 In order to discover maritime traffic situation scientifically from automatic identification system(AIS)information in the data mining for the abnormal vessels identification better,in this paper,an improved density-based spatial clustering of applications with noise(DBSCAN),combined with the isolation forest algorithm(iForest)is proposed. The inner distribution law and the change of clustering effect of the dataset containing a large amount of uncorrelated vessel distribution data are selected to find the anomalies by this method. At the same time,the vessel location(LAT,LON)and speed over ground(SOG)are clustered to combine the speed with the vessel density. After clustering the vessel speed,the abnormal boundary constructed by geographical knowledge and iForest is adept at finding the distinct abnormal behavior of the vessel. Taking the AIS data of Beibu Gulf as an example,the algorithm in this paper can be used to find and analyze anomalies,which can simplify the monitoring method of anomaly identification,provide a good vessel monitoring environment for maritime detection departments,relieve the work burden of monitoring personnel,and provide reasonable suggestions for channel construction departments,emergency response departments and maritime supervision departments.
作者 王臻睿 赵坤宇 蔡川 丁孟真 王鹏 WANG Zhenrui;ZHAO Kunyu;CAI Chuan;DING Mengzhen;WANG Peng(School of Information Science and Engineering,Lanzhou University,Lanzhou 730000)
出处 《舰船电子工程》 2021年第4期89-94,共6页 Ship Electronic Engineering
基金 国家自然科学基金项目(编号:61772006) 广西科技项目(编号:桂科AA17204096,桂科AB17129012,桂科AD16380076) 广西“八桂学者”专项资助。
  • 相关文献

参考文献5

二级参考文献38

  • 1刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 2邵哲平,孙腾达,潘家财,纪贤标.基于ECDIS和AIS的船舶综合信息服务系统的开发[J].中国航海,2007,30(2):30-33. 被引量:33
  • 3盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2008:276-281.
  • 4彭京,杨冬青,唐世渭,付艳,蒋汉奎.一种基于语义内积空间模型的文本聚类算法[J].计算机学报,2007,30(8):1354-1363. 被引量:44
  • 5BEZDEK J C. Pattern recognition with fuzzy objective function algorithms [ M]. New York: Plenum Press, 1981.
  • 6HAND D, MANNILA H, SMYTH P. Principles of data mining [ M]. Cambridge: MIT Press, 2001.
  • 7TAN PANG-NING, STEINBACH M, KUMAR V. Introduction to data mining [M]. Boston, MA: Addison-Wesley, 2006.
  • 8CHEN DUO, LI XUE. An adaptive cluster validity index for the fuzzy C-means [ J]. International Journal of Computer Science and Network Security, 2007, 7(2) : 146 - 156.
  • 9KAUFMAN L, ROUSSEEUW P J. Finding groups in data: an introduction to cluster analysis [ M]. New York: John Wiley & Sons, 1990.
  • 10UCI Machine Leaming Repository [ EB/OL]. [ 2010 -02 -25]. http://www, isc. uci. edu/- mlearrc/MLRepository, html.

共引文献215

同被引文献84

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部