期刊文献+

基于Spark框架的电力大数据服务技术 被引量:2

Power system and big data service technology based on spark framework
下载PDF
导出
摘要 电力大数据服务是智能电网建设的关键,提出了基于改进AP聚类的用电行为分析方法和基于随机森林的电力负荷预测方法。针对AP聚类分析用电行为存在的复杂度较高问题,利用熵权法确立指标权值,改进相似度计算方式,实现了用户用电行为的快速准确分析。针对电力负荷预测问题,采用模糊C均值构建历史相似日样本集,利用随机森林预测电力负荷。为提高电力数据服务运行效率,构建了基于Spark框架的并行数据处理平台。实验结果表明,提出方法能够有效提取用户的用电行为和预测电力负荷,且性能优于现有方法。 Power system and big data service is the key to the construction of smart grid.This paper proposes a power consumption behavior analysis method based on improved AP clustering and a power load forecasting method based on random forest.Since the high complexity of AP clustering analysis of electricity consumption behavior,entropy weight method is used to establish the index weight,and to improve the similarity calculation method,which realize the fast and accurate analysis of user electricity consumption behavior.Aiming at the problem of power load forecasting,fuzzy c-means is used to construct historical similar daily sample set,and random forest is used to forecast power load.In order to improve the operation efficiency of power data service,a parallel data processing platform based on spark framework is constructed.Experiment results show that the proposed method can effectively extract the user’s electricity consumption behavior and predict the power load,and its performance is better than the existing methods.
作者 孙煜华 李情 张梦清 SUN Yu-hua;LI Qing;ZHANG Meng-qing(Guangzhou Power Supply Bureau of Guangdong Power Grid Co.,Ltd.,Guangzhou 510610,China)
出处 《信息技术》 2021年第5期102-108,共7页 Information Technology
关键词 电力大数据 用电行为分析 负荷预测 AP聚类 随机森林 power system and big data power consumption behavior analysis load forecasting AP clustering random forest
  • 相关文献

参考文献12

二级参考文献152

  • 1吴欣,郭创新.基于贝叶斯网络的电力系统故障诊断方法[J].电力系统及其自动化学报,2005,17(4):11-15. 被引量:52
  • 2张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 3张振高,杨正瓴.短期负荷预测中的负荷求导法及天气因素的使用[J].电力系统及其自动化学报,2006,18(5):79-83. 被引量:17
  • 4王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:145
  • 5MACKEY G,SEHRISH S,WANG Jun.Improving metadata management for small files in HDFS[C]//IEEE International Conference on Cluster Computing and Workshops,2009:1-4.
  • 6SHVACHKO K,KUANG H,RADIA S,et al.The hadoop distributed file system in mass storage systems and technologies(MSST)[C]//2010 IEEE 26th Symposium on:IEEE,2010:1-10.
  • 7ARMBRUST M,FOX A,GRIFFITH R.Above the clouds:a berkeley view of cloud computing[D].Berkeley:University of California,2009.
  • 8HUANG D,SHI X,IBRAHIM S,et al.MR-scope:a real-time tracing tool for Map Reduce[J].The Map Reduce of HPDC,2010:849-855.
  • 9WANG Yandong,QUE Xinyu,YU Weikuan,et al.Hadoop acceleration through network levitated merge[C]//Proceedings of 2011 International Conference for High Performance Computing,Networking,Storage and Analysis.Washington:IEEE Press,2011:1-10.
  • 10KOSSMANN D,KRASKA T,LOESING S,et al.Cloudy:a modular cloud storage system[C]//Proc of the 36th Int’l Conf on Very Large Data Bases.Singapore:VLDB Endowment,2010:1533-1536.

共引文献394

同被引文献47

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部