摘要
研究了一类磁流体力学方程组的半隐Galerkin有限元全离散算法,该磁流体力学方程组是由定常的Maxwell方程和非定常的Navier-Stokes方程耦合而成,证明了该磁流体力学方程组解的正则性.对磁场、速度场和压力采用协调Galerkin有限元逼近,得到了其时间和空间的无条件最优误差估计.
This paper presents a decoupled,linearized semi-implicit Galerkin FEM scheme for a MHD system coupled by the steady Maxwell equations and the nonstationary Navier-Stokes equations.First,we prove the regularity of the solution of the MHD equations.Moreover,we obtain the unconditional optimal error estimates in time and space by adopting the coordinated Galerkin finite element approximation for magnetic field,velocity field and pressure.
作者
翟春芳
ZHAI Chunfang(School of Mathematics and Physics,Wenzhou University,Wenzhou,China 325035)
出处
《温州大学学报(自然科学版)》
2021年第2期9-17,共9页
Journal of Wenzhou University(Natural Science Edition)
关键词
磁流体动力学方程
半隐法
有限元逼近
空间误差估计
Magnetohydrodynamics(MHD)Equation
Semi-implicit Scheme
Finite Element Approximation
Temporal-spatial Error Estimates