期刊文献+

Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis:Dimensionality and interface engineering 被引量:6

原文传递
导出
摘要 Two-dimensional(2D)transition metal dichalcogenides(TMDCs)are emerging as promising building blocks of high-performance photocatalysts for visible-light-driven water splitting because of their unique physical,chemical,electronic,and optical properties.This review focuses on the fundamentals of 2D TMDC-based mixed-dimensional heterostructures and their unique properties as visible-light-driven photocatalysts from the perspective of dimensionality and interface engineering.First,we discuss the approaches and advantages of surface modification and functionalization of 2D TMDCs for photocatalytic water splitting under visible-light illumination.We then classify the strategies for improving the photocatalytic activity of 2D TMDCs via combination with various low-dimensional nanomaterials to form mixed-dimensional heterostructures.Further,we highlight recent advances in the use of these mixed-dimensional heterostructures as high-efficiency visible-light-driven photocatalysts,particularly focusing on synthesis routes,modification approaches,and physiochemical mechanisms for improving their photoactivity.Finally,we provide our perspectives on future opportunities and challenges in promoting real-world photocatalytic applications of 2D TMDC-based heterostructures.
出处 《Nano Research》 SCIE EI CAS CSCD 2021年第6期2003-2022,共20页 纳米研究(英文版)
基金 the financial support from the Research Grants Council of Hong Kong(No.15304519) the National Natural Science Foundation of China(No.11904306) the Hong Kong Polytechnic University(No.1-ZVH9) The authors also thank the Fundamental Research Funds for the Central Universities(Nos.2019B02414 and 2019B44214) PAPD,and Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering,MOE(No.KLIEEE-18-02).
  • 相关文献

参考文献15

二级参考文献57

  • 1Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.
  • 2Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photo- catalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.
  • 3Osterloh, F. E. Inorganic nanostructures for photoelectro- chemical and photocatalytic water splitting. Chem. Soc. Rev 2013, 42, 2294-2320.
  • 4Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527-546.
  • 5Maeda, K.; Teramura, K.; Saito, N.; Inoue, Y.; Domen, K. Improvement of photocatalytic activity of (Ga1-xZnx)(N2O3) solid solution for overall water splitting by co-loading Cr and another transition metal. J. Catal. 2006, 243,303-308.
  • 6Teramura, K.; Maeda, K.; Saito, T.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1-xZnx)(N1-xOx) for photocatalytic overall water splitting. J. Phys. Chem. B 2006, 110, 4500-4501.
  • 7Kato, H.; Kudo, A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys Chem. B 2001, 105, 4285-4292.
  • 8Trasatti, S. Work function, electronegativity, and electro- chemical behaviour of metals: Ⅲ. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfac. Electrochem. 1972, 39, 163-184.
  • 9Linsebigler, A. L.; Lu, G. Q.; Yates Jr, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735- 758.
  • 10Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.

共引文献103

同被引文献66

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部