期刊文献+

基于广义微扰理论与CMFD加速的敏感性分析

Generalized Perturbation-Theory-Based Sensitivity Analysis with CMFD Acceleration
原文传递
导出
摘要 为实现反应堆物理设计程序KYLIN-Ⅱ的核数据广义敏感性分析功能,本研究采用广义微扰理论,依据响应形式构建具有正交定解条件的广义固定源方程,求解广义共轭通量从而计算得到核数据的广义敏感性系数。此外,提出通过采用粗网有限差分算法求解广义固定源方程,达到加速求解的目的。研究结果表明,使用的加速算法使得求解效率提高了约4.3倍,且计算得到的核数据敏感性系数与直接扰动法相比基本一致。因此,本研究建立的基于广义微扰理论与粗网有限差分加速算法能够用于核数据广义敏感性分析。 To perform the generalized sensitivity analysis for nuclear data in a reactor physics design code,KYLIN-Ⅱ,the generalized perturbation theory is adopted and several generalized fix-source equations with the orthogonal definite condition need to be solved when the sensitivity coefficients are figured out.Besides,the paper develops a new approach,CMFD-based generalized fix-source equation solution,to accelerate the convergence.The convergence efficiency of the generalized fixed-source equation is improved by roughly 4.3 times,and the sensitivity coefficients calculated by the GPT accord with those calculated by the direct perturbation theory,which demonstrates the sensitivity analysis ability in KYLIN-Ⅱ.
作者 吴屈 彭星杰 于颖锐 李庆 Wu Qu;Peng Xingjie;Yu Yingrui;Li Qing(Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu,610213,China)
出处 《核动力工程》 EI CAS CSCD 北大核心 2021年第3期229-233,共5页 Nuclear Power Engineering
基金 国家自然科学基金(11905214)。
关键词 敏感性分析 广义微扰理论 粗网有限差分 核数据 广义固定源方程 Sensitivity analysis Generalized perturbation theory Coarse mesh finite difference Nuclear data Generalized fixed-source equation
  • 相关文献

参考文献3

二级参考文献13

  • 1Dion M,Marleau G.Resonance self-shielding effects on eigenvalue sensitivity[].M&C.2013
  • 2Weisbin C R,Marable J H,Lucius J L,et al.Application of FORSS Sensitivity and Uncertainty Methodology to Fast Reactor Benchmark Analysis. ORNL/TM-5563 . 1976
  • 3Hongchun Wu,Weiyan Yang,Yulong Qin,et al.Benchmark problems and results for verifying resonance c a l c u l a t i o n m e t h o d o l o g i e s[].P H Y S O R.2012
  • 4Ball M R.Uncertainty analysis in lattice reactor physics calculations[]..2012
  • 5柴晓明.求解三维中子输运问题的特征线方法研究[D].北京:清华大学工程物理系,2010.
  • 6Toshikazu Takeda, Toshiki Okamoto, Akira Inoue, et al. Effect of anisotropic scattering in neutronics analysis of BWR assembly [J]. Annals of Nuclear Energy, 2006, 33: 1315-1321.
  • 7Halsall M J. CACTUS-A characteristic solution to the neutron transport equation in complicated geometries, AEEW-R 1291[R]. UK: United Kingdom Atomic Energy Authority, 1988.
  • 8Jevremovic T, Vujic J , Tsuda K. ANEMONA - a neutron transport code for general geometry reactor assemblies based on the method of characteristics and R-function solid modeler [J]. Annals of Nuclear Energy, 2001, 28: 125-152.
  • 9Richard Sanchez, Li Mao, Simone Santandrea. Treatment of boundary conditions in trajectory,based deterministic transport methods [J]. Nucl. Sci. Eng., 2002, 140: 23-50.
  • 10Yang X, Satvat N. MOCUM: a two-dimensional method of characteristics code based on unstructured meshing for general geometries: PHYSOR 2012: advances in Reactor Physics Linking Research, Industry, and Education[C]. Knoxville, TN, United States: American Nuclear Society, 2012.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部