期刊文献+

基于Voronoi模型的多晶金属切削有限元分析 被引量:2

Finite Element Analysis of Polycrystalline Metal Cutting Based on Voronoi Model
下载PDF
导出
摘要 基于Voronoi建模原理开发了满足金属材料晶体学拓扑规律的多晶建模算法。在晶体尺寸满足对数正态分布时,采用多边形内角阈值来控制晶体饱满度。结合ABAQUS二次开发技术实现了钛合金多晶切削过程的参数化建模及有限元分析,并通过对比车削试验数据和仿真数据验证了模型的可靠性。仿真结果表明:在材料内部晶界的阻力作用下,较小的晶体平均尺寸和标准差分别容易产生较大的切削力和较低的切削温度。该建模方法能较好地模拟多晶金属材料的切削过程,可为切削机理的细观研究奠定技术基础。 Based on the theory of Voronoi modeling, a polycrystalline modeling algorithm that satisfies the topological law of metal crystallography is developed.While the crystal size satisfies the lognormal distribution, the polygonal internal angle threshold is used to control the crystal fullness.Combined with the secondary development technology of ABAQUS,the parametric modeling and finite element analysis of the titanium alloy polycrystalline cutting process are realized, and the reliability of the model is verified by comparing turning experiment data and simulation data.The simulation results show that smaller average crystal size and standard deviation are prone to produce larger cutting force and lower cutting temperature respectively under the resistance of the grain boundary inside the material.This modeling method can well simulate the cutting process of polycrystalline metal materials and lay the technical foundation for the mesoscopic research of the cutting mechanism.
作者 彭茂武 谷丽瑶 Peng Maowu;Gu Liyao(School of Mechanical Engingeering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《工具技术》 北大核心 2021年第5期48-54,共7页 Tool Engineering
基金 中央高校基本科研业务费专项资金资助(2682020CX33)。
关键词 金属切削 VORONOI 晶体饱满度 参数化 有限元分析 metal cutting Voronoi crystal fullness parameterization finite element analysis
  • 相关文献

参考文献4

二级参考文献72

  • 1赵永庆,奚正平,曲恒磊.我国航空用钛合金材料研究现状[J].航空材料学报,2003,23(z1):215-219. 被引量:126
  • 2徐洲,王秀喜,梁海弋,吴恒安.纳米单晶与多晶铜薄膜力学行为的数值模拟研究[J].物理学报,2004,53(11):3637-3643. 被引量:9
  • 3陈时锦,初文江,孙西芝,程凯.多晶体纳米切削的分子动力学仿真研究[J].机械设计与制造,2006(4):117-119. 被引量:4
  • 4Van Luttervelt C A, Childs T, Jawahir I S, et al. The State-of-the-Art of Modelling in Machining Processes [J]. CIRP Annals-Manufacturing Technology (S0007-8506), 1998, 47(2): 587-626.
  • 5P J Arrazola, T 0zel, D Umbrello, et al. Recent advances in modelling of metal machining processes [J]. CIRP Annals-Manufacturing Technology (S0007-8506), 2013, 62(2): 695-718.
  • 6Oxley PLB. Introducing Strain-Rate Dependent Work Material Properties into the Analysis of Orthogonal Cutting [J]. CIRP Annals-Manufacturing Technology (S0007-8506), 1964, 13: 127-138.
  • 7Oxley PLB. The Mechanics of Machining: An Analytical Approach to Assessing Machinability [M]. Chichester, England: Ellis Horwood Limited, 1989.
  • 8Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures [C]// Proceedings of the 7th Int. Symposium on Ballistics, The Hague, The Netherlands, 1983: 541-547.
  • 9Calamaz M, Coupard D, Girot F. A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti-6A1-4V [J]. International Journal of Machine Tools & Manufacture (S0890-6955), 2008, 48(3): 275-288.
  • 10Calamaz M, Limido J, Nouari M, et al. Toward A Better Understanding of Tool Wear Effect Through A Comparison Between Experiments and SPH Numerical Modelling of Machining Hard Materials [J]. International Journal of Refractory Metals & Hard Materials (S0263-4368), 2009, 27(3): 595-604.

共引文献26

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部