期刊文献+

Advances in Deep Learning Methods for Visual Tracking:Literature Review and Fundamentals 被引量:5

原文传递
导出
摘要 Recently,deep learning has achieved great success in visual tracking tasks,particularly in single-object tracking.This paper provides a comprehensive review of state-of-the-art single-object tracking algorithms based on deep learning.First,we introduce basic knowledge of deep visual tracking,including fundamental concepts,existing algorithms,and previous reviews.Second,we briefly review existing deep learning methods by categorizing them into data-invariant and data-adaptive methods based on whether they can dynamically change their model parameters or architectures.Then,we conclude with the general components of deep trackers.In this way,we systematically analyze the novelties of several recently proposed deep trackers.Thereafter,popular datasets such as Object Tracking Benchmark(OTB)and Visual Object Tracking(VOT)are discussed,along with the performances of several deep trackers.Finally,based on observations and experimental results,we discuss three different characteristics of deep trackers,i.e.,the relationships between their general components,exploration of more effective tracking frameworks,and interpretability of their motion estimation components.
出处 《International Journal of Automation and computing》 EI CSCD 2021年第3期311-333,共23页 国际自动化与计算杂志(英文版)
基金 supported by National Natural Science Foundation of China(Nos.61922064 and U2033210) Zhejiang Provincial Natural Science Foundation(Nos.LR17F030001 and LQ19F020005) the Project of Science and Technology Plans of Wenzhou City(Nos.C20170008 and ZG2017016)。
  • 相关文献

参考文献5

二级参考文献37

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2王亮,吴福朝.基于一维标定物的多摄像机标定[J].自动化学报,2007,33(3):225-231. 被引量:38
  • 3Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the 1EEE, vol. 86, no. 11, pp. 2278-2324, 1998.
  • 4A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet clas- sification with deep convolutional neural networks. In Pro- ceedings of Advances in Neural Information Processing Sys- tems 25, NIPS, Lake Tahoe, Nevada, USA, pp. 1091105, 2012.
  • 5K. Cho, B. van Merinboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. Learning phrase repre- sentations using RNN encoder-decoder for statistical ma- chine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Doha, Qatar, pp. 1721734, 2014.
  • 6I. Sutskever, O. Vinyals, Q. V. Le. Sequence to sequence learning with neural networks. In Proceedings of Advances in Neural Information Processing Systems 27, NIPS, Mon- treal, Canada, pp. 3104-3112, 2014.
  • 7D. Bahdanau, K. Cho, Y. Bengio. Neural machine transla- tion by jointly learning to align and translate. In Interna- tional Conference on Learning Representations 2015, San Diego, USA, 2015.
  • 8A. Graves, A. R. Mohamed, G. Hinton. Speech recogni- tion with deep recurrent neural networks. In Proceedings of International Conference on Acoustics, Speech and Sig- nal Processing, IEEE, Vancouver, Canada, pp. 6645-6649, 2013.
  • 9K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. S. Zemel, Y. Bengio. Show, attend and tell: Neural image caption generation with visual atten- tion. In Proceedings of the 32nd International Conference on Machine Learning, Lille, prance, vol. 37, pp. 2048 2057, 2015.
  • 10A. Karpathy, F. F. Li. Deep visual-semantic alignments for generating image descriptions. In Proceedings of IEEE In- ternational Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 3128 3137, 2015.

共引文献294

同被引文献9

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部