期刊文献+

基于贝叶斯网络的车辆并线意图识别 被引量:4

Intention Recognition of Vehicle Merging Based on Bayesian Network
下载PDF
导出
摘要 为了在多车道行驶场景中准确判断出旁车并线意图,提出了一种基于贝叶斯网络的旁车并线意图识别模型。首先,从运动轨迹数据集中筛选样本构建训练集和测试集,选取特征参数,并利用卡方分裂算法对其进行离散化预处理。其次,在评分搜索的网络结构学习基础上,加入随机抽样来避免局部最优,通过构造接近目标平稳分布的马尔可夫链,多次迭代直到收敛到平稳状态来选取最佳网络结构。然后,使用贝叶斯估计法学习网络参数,搭建基于贝叶斯网络的旁车并线意图识别模型。最后,以测试样本进行验证。验证结果表明:基于贝叶斯网络的旁车并线意图识别模型,对并线样本和直行样本的识别准确率分别高达94.76%和96.38%,具有良好的识别精度。减少任意一个纵向参数的模型识别准确率都大于87%,而减少任意一个横向参数的模型识别准确率都小于76%,横向参数对识别效果的影响力大于纵向参数。 To accurately identify the cut-in intention of a side-lane vehicle in a multi-lane driving scene,a side-lane vehicle cut-in identification model was proposed based on the Bayesian Network.First,samples were screened from the motion data set to construct a training set and a test set,and characteristic parameters were selected and discretized by using the chi-square splitting algorithm.Second,on the basis of the score searchbased network structure learning,the random sampling was added to avoid local optimum,and the optimal network structure was selected by constructing a Markov chain close to the target’s stationary distribution and iterating it repeatedly until it converged to a stationary state.Then,the Bayesian estimation method was used to learn network parameters and build a side-lane vehicle cut-in identification model based on the Bayesian Network.Finally,the test samples were used for validation.The results showed that the Bayesian network-based side-lane vehicle cut-in identification model exhibits an accuracy of 94.76%and 96.38%for cut-in samples and go-straight samples,respectively.The accuracies are greater than 87%when a vertical parameter is deducted and the accuracies are less than 76%when a horizontal parameter is deducted from the model.It can be seen that horizontal parameters have a greater impact on the identification effect than vertical parameters.
作者 姜顺明 匡志豪 王奕轩 吴朋朋 JIANG Shunming;KUANG Zhihao;WANG Yixuan;WU Pengpeng(School of Automotive&Traffic Engineering,Jiangsu University,Zhenjiang 212013,China)
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2021年第5期39-44,M0004,共7页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(51575239)。
关键词 贝叶斯网络 意图识别 随机抽样 卡方分裂 Bayesian network intention recognition random sampling Chi-square split
  • 相关文献

参考文献8

二级参考文献35

  • 1王芳,万磊,徐玉如,张玉奎.基于改进人工势场的水下机器人路径规划[J].华中科技大学学报(自然科学版),2011,39(S2):184-187. 被引量:15
  • 2Cheng-Dong Wu,Ying Zhang,Meng-Xin Li,Yong Yue.A Rough Set GA-based Hybrid Method for Robot Path Planning[J].International Journal of Automation and computing,2006,3(1):29-34. 被引量:6
  • 3Xiao Lingyun, Gao Feng. A Comprehensive Review of the Devel- opment of Adaptive Cruise Control Systems [ J ]. Vehicle System Dynamics, 2010, 48 ( 10 ) : 1167-1192.
  • 4Moon Seungwuk, Cho Wanki, Yi Kyongsu. Intelligent Vehicle Safety Control Strategy in Various Driving Situations [ J ]. Vehicle System Dynamics, 2010, 48( 1 ) :537-554.
  • 5Bako Rajaonah, Francoise Anceaux, Fabrice Vienne. Trust and the Use of Adaptive Cruise Control: a Study of a cut-in Situation [J]. Cognition Technology and Work, 2006, 8(2) :146-155.
  • 6Peter Hidas. Modelling Vehicle Interactions in Microscopic Simula- tion of Merging and Weaving [ J ]. Transportation Research Part C : Emerging Technologies, 2005, 13( 1 ) :37-62.
  • 7Moon Seungwuk, Kang Hyoungjin, Yi Kyongsu. Multi Vehicle Target Selection for Adaptive Cruise Control [ J ]. Vehicle System Dynamics, 2010, 48( 11 ) :1325-1343.
  • 8李径亮.车辆ABS/ASR/ACC集成技术研究[D].北京:北京理工大学,2011.
  • 9Hsu Chihwei, Chang Chihehung, Lin Chihjen. A Practical Guide to Support Vector Classification [R]. Talwani National Taiwan U- niversity, 2010.
  • 10Lin Chunfu,Wang Shengde. Fuzzy Support Vector Machines [ ] ]. IEEE Transactions on Meural Networks, 2002, 13(2) :464-471.

共引文献163

同被引文献26

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部