摘要
This study explored the feasibility of integrating an adsorption and solvent scrubbing process for postcombustion CO_(2) capture from a coal-fired power plant.This integrated process has two stages:the first is a vacuum swing adsorption(VSA)process using activated carbon as the adsorbent,and the second stage is a solvent scrubber/stripper system using monoethanolamine (30 wt-%) as the solvent.The results showed that the adsorption process could enrich CO_(2) in the flue gas from 12 to 50 mol-% with a CO_(2) recovery of >90%,and the concentrated CO_(2) stream fed to the solvent scrubber had a significantly lower volumetric flowrate.The increased CO_(2) concentration and reduced feed flow to the absorption section resulted in significant reduction in the diameter of the solvent absorber,bringing the size of the absorber from uneconomically large to readily achievable domain.In addition,the VSA process could also remove most of the oxygen initially existed in the feed gas,alleviating the downstream corrosion and degradation problems in the absorption section.The findings in this work will reduce the technical risks associated with the state-of-the art solvent absorption technology for CO_(2) capture and thus accelerate the deployment of such technologies to reduce carbon emissions.
基金
financial assistance provided to the CO2CRC by the Australian Government through its CRC program and through Australian National Low Emissions Coal Research and Development(ANLEC R&D)
supported by Australian Coal Association Low Emissions Technology Limited and the Australian Government through the Clean Energy Initiative。