期刊文献+

TWE‐WSD: An effective topical word embedding based word sense disambiguation 被引量:1

下载PDF
导出
摘要 Word embedding has been widely used in word sense disambiguation(WSD)and many other tasks in recent years for it can well represent the semantics of words.However,the existing word embedding methods mostly represent each word as a single vector,without considering the homonymy and polysemy of the word;thus,their performances are limited.In order to address this problem,an effective topical word embedding(TWE)‐based WSD method,named TWE‐WSD,is proposed,which integrates Latent Dirichlet Allocation(LDA)and word embedding.Instead of generating a single word vector(WV)for each word,TWE‐WSD generates a topical WV for each word under each topic.Effective integrating strategies are designed to obtain high quality contextual vectors.Extensive experiments on SemEval‐2013 and SemEval‐2015 for English all‐words tasks showed that TWE‐WSD outperforms other state‐of‐the‐art WSD methods,especially on nouns.
出处 《CAAI Transactions on Intelligence Technology》 EI 2021年第1期72-79,共8页 智能技术学报(英文)
基金 National Natural Science Foundation of China,Grant/Award Number:61562054 The Fund of China Scholarship Council,Grant/Award Number:201908530036 Talents Introduction Project of Guangxi University for Nationalities,Grant/Award Number:2014MDQD020。
关键词 EMBEDDING WORD WSD
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部