期刊文献+

优化算法的量子动力学探讨 被引量:2

A brief study on quantum dynamics of optimization algorithm
下载PDF
导出
摘要 对优化算法量子动力学的基本理论进行了简要快报.以动力学的视角来认识优化算法的迭代演化过程,建立了优化算法的量子动力学方程.以量子动力学方程为理论平台,利用目标函数的Taylor近似,剥离出了优化算法的基本迭代操作,并构造出了量子动力学模型下优化算法的基本迭代过程.实验结果证明基本迭代过程具有良好的优化性能.优化算法的量子动力学证明了量子理论可以有效的描述优化问题和优化算法,并解决了长期以来优化算法领域缺乏完备理论基础的问题. The basic theory of quantum dynamics of optimization algorithm was briefly reported, and by trying to understand the iterative evolution process of optimization algorithm from the perspective of quantum dynamics, the quantum dynamical equation of optimization algorithm was established. Moreover, on the basis of the theoretical platform of quantum dynamical equation and Taylor approximation of the objective function, the basic iterative operations of optimization algorithm were stripped from massive optimization behaviors, and the basic iterative process of optimization algorithm under quantum dynamics was constructed. The experimental results showed that the basic iterative process had good optimization performance. The quantum dynamics of optimization algorithm proves that quantum theory can effectively describe the optimization problem and optimization algorithm, and solve the problem of lacking a complete theoretical basis in the field of optimization algorithm for decades.
作者 王鹏 陈雅琴 辛罡 焦育威 尹鑫钰 杨国松 周岩 穆磊 王方 WANG Peng;CHEN Ya-qin;XIN Gang;JIAO Yu-wei;YIN Xin-yu;YANG Guo-song;ZHOU Yan;MU Lei;WANG Fang(School of Computer Science and Engineering,Southwest Minzu University,Chengdu 610041,China)
出处 《西南民族大学学报(自然科学版)》 CAS 2021年第3期288-296,共9页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金(60702075) 西南民族大学中央高校基本科研业务费专项资金(2020NYB18)。
关键词 量子动力学 优化算法 薛定谔方程 波函数模方 基本迭代过程 quantum dynamics optimization algorithm Schr9dinger equation module square of wave function basic iterative process
  • 相关文献

参考文献10

二级参考文献52

  • 1姚新,陈国良,徐惠敏,刘勇.进化算法研究进展[J].计算机学报,1995,18(9):694-706. 被引量:102
  • 2冯斌,须文波.基于粒子群算法的量子谐振子模型[J].计算机工程,2006,32(20):18-21. 被引量:11
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1076
  • 4Chang Y W, Yu G F. Multi-Sub-Swarm PSO algorithm for multimodal function optimization. In: Proceedings of the 2014 International Conference on Computer Science and In- formation Technology. India: Springer, 2014. 687-695.
  • 5Qu B Y, Suganthan P N, Dan S. A distance-based locally in- formed particle swarm model for multimodal optimization. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 387-402.
  • 6Shih C J, Teng T L, Chen S K. A niche-related particle swarm meta-heuristic algorithm for multimodal optimiza- tion. In: Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems. Switzer- land, Germany: Springer, 2014. 313-321.
  • 7Agrawal S, Sanjay S. FRPSO: fletcher-reeves based particle swarm optimization for multimodal function optimization. Soft Computing, 2014, 18(11): 2227-2243.
  • 8Qu B Y, Suganthan P N, Liang J J. Differential evolution with neighborhood mutation for multimodal optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(5): 601-614.
  • 9Basak A, Das S, Tan K C. Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection. IEEE Transactions on Evo- lutionary Computation, 2013, 17(5): 666-685.
  • 10Pang C Y, Li X, Liu H, Wang Y F, Hu B Q. Applying ant colony optimization to search all extreme points of function. In: Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications. Taichung, China: IEEE, 2010. 1517-1521.

共引文献33

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部