期刊文献+

基于卷积神经网络的水表读数识别 被引量:4

Water Meter Reading Recognition Based on Convolutional Neural Network
下载PDF
导出
摘要 老式水表的人工抄表模式需要耗费大量的人工和时间成本。而当前计算机算力飞速增长,深度学习理论取得不断突破,利用神经网络和深度学习理论来实现水表读数的自动识别成为可能。为提高水表读数识别率,文章通过偏转和加噪实现数据集扩增,采用灰度化、二值化等操作对数据集进行预处理,在Tensor Flow框架下搭建卷积神经网络,选取3×3的卷积核组成三层卷积神经网络。试验结果表明,该方法的单个字符识别准确率能够达到99%,水表整体识别率稳定在97%。 The manual reading mode of old water meters requires a lot of labor and time costs. At present, computer computing power is increasing rapidly, and deep learning theory has made continuous breakthroughs. It is possible to use neural network and deep learning theories to realize automatic recognition of water meter readings. In order to improve the recognition rate of water meter readings, this article used deflection and noise addition to achieve data set amplification, used grayscale, binarization and other operations to preprocess the data set, built a convolutional neural network under the TensorFlow framework, and selected 3×3 The convolution kernel composed a three-layer convolutional neural network. The test results show that the single character recognition accuracy rate of this method can be stabilized at 98%, and the overall water meter recognition rate is stable at 96%.
作者 韦文斐 卓豫鑫 建晓鹏 Wei Wenfei;Zhuo Yuxin;Jian Xiaopeng(College of Information Science and Engineering,Henan University of Technology;School of Artificial Intelligence and Big Data,Henan University of Technology,Henan 450001)
出处 《长江信息通信》 2021年第4期26-28,34,共4页 Changjiang Information & Communications
基金 河南工业大学2019本科教育教学改革研究与实践项目JXYJ-Z201920(计算机专业硬件课程创新研究与教学实践) 河南工业大学2019年度离散数学“线上线下混合教学模式课程”。
关键词 图像处理 数字识别 卷积神经网络 水表 预处理 water meter image processing digital recognition convolutional neural network preprocessing
  • 相关文献

参考文献10

二级参考文献68

  • 1王安静,陈玲,宋建永,金赞.用VC++实现图像连通区域标记[J].电脑编程技巧与维护,2003(1):74-77. 被引量:10
  • 2章专,仲林国,朱志刚.基于图像采集与处理的自动抄表系统[J].电测与仪表,2004,41(10):60-62. 被引量:6
  • 3金军槐,李仁旺,韦波.智能远程水表管理系统的设计与实现[J].计算机仿真,2005,22(8):241-245. 被引量:7
  • 4陈柏生.一种二值图像连通区域标记的新方法[J].计算机工程与应用,2006,42(25):46-47. 被引量:58
  • 5杨淑莹.模式识别与智能计算[M].北京:电子工业出版社,2008.
  • 6刘瑞祯,于仕琪.OpenCV教程·基础篇[M].北京:北京航空航天大学出版社,2007.
  • 7Mori S, Suen C. Y, Yamamoto K. Historical Reviw of OCR Re- search and Development [J]. Proceedings of IEEE 1992 (7) : 1029 - 1058.
  • 8张志佳,李媛.基于灰度模板匹配的仪表字符识别研究[A].Proceedings of the 29th Chinese Control Conference [C]. 2010, 2987 - 2990.
  • 9Rni X P, Song X F. A Character Recognition Algorithm Adapt to a Specific Kind of Water Meter [J]. Computer Science and Informa- tion Engineering, 2009, (5): 632-636.
  • 10姚蕾,陈沧毅,路林吉.基于模板匹配的水表字符识别算法[C]//第十届工业仪表与自动化学术会议.上海:2009:80-83.

共引文献112

同被引文献37

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部