期刊文献+

基于多尺度耦合的管式SOFC数值模拟 被引量:1

Numerical Simulation of Tubular Solid Oxide Fuel Cell Based on Multi-Scale Coupling
下载PDF
导出
摘要 基于多尺度耦合模拟的思想,采用格子玻尔兹曼方法建立管式固体氧化物燃料电池(SOFC)电化学反应扩散数学模型,采用质量、动量、能力守恒方程建立CFD数学模型,并以反应放热量作为边界条件输入CFD模型中计算传热、流动问题。结果表明,H2的浓度和反应时间随反应温度逐渐降低,电流密度随反应温度逐渐增加,空气流道中的气体温度和管壁温度沿着流动方向逐渐升高,流道内部的温度随空气流速的增加而逐渐降低。表明多尺度耦合方法模拟管式SOFC是行之有效的,在一定程度上解决了管式SOFC介观尺度和宏观尺度多物理场耦合的问题。 Based on the idea of multi-scale coupling simulation, the tubular SOFC electrochemical reaction-diffusion mathematical model was established by using the lattice Boltzmann method, and the CFD mathematical model was established by using the conservation equations of mass, momentum and capacity. The results showed that the concentration and reaction time of H2 gradually decreased with the reaction temperature, and the current density gradually increased with the reaction temperature. The gas temperature and wall temperature in the air passage gradually increased along the flow direction. The faster the air velocity was, the more heat was taken away, and the lower the overall temperature of the battery. It is proved that the multi-scale coupling method is effective to simulate the tubular SOFC, and solves the problem of the mesoscopic and macroscopic coupling of the tubular SOFC to some extent.
作者 马旭 杨晨 MA Xu;YANG Chen(Zhuhai City Polytechnic,Guangdong Zhuhai 519090,China;School of Engergy and Power Engineering Chongqing University,Chongqing 400044,China)
出处 《计算机仿真》 北大核心 2021年第5期70-74,共5页 Computer Simulation
关键词 管式固体氧化物燃料电池 多尺度耦合 格子玻尔兹曼方法 Tubular solid oxide fuel cell Multi-scale coupling Lattice Boltzmann method
  • 相关文献

参考文献4

二级参考文献24

  • 1卢立宁,李素芬,沈胜强,卢立宇.固体氧化物燃料电池与燃气轮机联合发电系统模拟研究[J].热能动力工程,2004,19(4):358-362. 被引量:19
  • 2朱新坚.中国燃料电池技术现状与展望[J].电池,2004,34(3):202-203. 被引量:22
  • 3黄强,朱新坚,曹广益.微尺度学在微型燃料电池数学模型中的应用[J].系统仿真学报,2005,17(9):2118-2122. 被引量:2
  • 4莫志军,朱新坚,曹广益.质子交换膜燃料电池建模与稳态分析[J].系统仿真学报,2005,17(9):2255-2259. 被引量:16
  • 5[5]PALSSON J,SELIMOVIC A,SJNNESSON L. Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation[J]. Journal of Power Sources, 2000, 86:442-448.
  • 6[6]TANAKA K,WEN C,YAMADA K. Design and evaluation of combined cycle system with solid oxide fuel cell and gas turbine[J]. Energy Conversion and Management, 2003, 44:597-609.
  • 7Lockett M,Simmons M J H,Kendall K.CFD to Predict Temperature Profile for Scale up of Micro-Tubular SOFC Stacks[J].Journal of Power Sources(S0378-7753),2004,131(1):243-246.
  • 8Tanaka K,Wen C,Yamada K,et al.Design and Evaluation of Combined Cycle System with Solid Oxide Fuel Cell and Gas Turbine[J].Fuel(S0016-2361),2000,79(12):1493-1507.
  • 9Chan S H,Ho H k,Tian Y.Modeling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant[J].Journal of Power Sources(S0378-7753),2002,109(1):111-120.
  • 10Nagata Susumu,Momma A Kihiko,Kato Tohru,et al.Numerical Analysis of Tubular SOFC with Internal Reformer[J].Journal of Power Sources(S0378-7753),2001,101(1):60-71.

共引文献26

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部