期刊文献+

用于1550nm吸收增强的微纳阵列复合结构设计 被引量:2

Design of Composite Micro-Nanoscale Array Structure for 1550 nm Absorption Enhancement
原文传递
导出
摘要 为了增强通信系统中光电探测器件对波长为1550 nm的光的吸收,提出一种包含硅栅、纳米银球和缓冲层的微纳复合结构。借助金属表面等离子激元共振局域场增强效应,以及硅栅的陷光效应和耦合作用,可以提高复合微纳阵列结构对光的吸收。利用时域有限差分法计算仿真光经过填充银纳米球和氧化铝的硅栅复合微结构阵列后的光场分布,分析硅柱阵列占空比、硅柱边长、高度以及填充物等对吸收性能的影响。仿真结果表明,当硅栅等线或等间隔、硅柱边长为800~1000 nm、硅柱间隙内填充纳米银球的直径为间隙宽度的一半且铺满间隙底部并覆盖氧化铝时,复合结构的吸收率随着硅柱阵列周期和柱高的不同能够达到0.2288~0.5753,对波长为1550 nm的近红外光具有显著增强吸收的作用。 To enhance the absorption of light using a wavelength of 1550 nm using a photodetector device in a communication system,we propose a composite micro-nanoscale structure including a silicon grid,nanoscale silver balls,and a buffer layer.The light absorption of the composite micro-nano array can be improved by means of the local field enhancement effect of surface plasmon resonance on metal and the trapping effect and coupling effect of silicon gate.The finite difference time domain method is used to calculate the light field distribution of the simulated light passing through the silicon grid composite micro-structure array filled with silver nanospheres and alumina.Then,the effect of the silicon column array duty ratio,the silicon column side length,the silicon column height and the filler on the absorption performance are analyzed.The simulation results show that when the silicon gate line or interval,silicon column length is 800-1000 nm,the diameter of the silicon column gap filling nanometer arguably is half of gap width and covered with clearance and covered in alumina,at the bottom of the composite structure of the absorption rate with high silica column array cycle and the column of different can reach 0.2288-0.5753,the near-infrared wavelength of 1550 nm have significantly enhanced absorption effects.
作者 季雪淞 张锦 杨鹏飞 孙国斌 蒋世磊 杨柳 Ji Xuesong;Zhang Jin;Yang Pengfei;Sun Guobin;Jiang Shilei;Yang Liu(School of Optoelectronic Engineering,Xi′an Technological University,Xi′an,Shannxi 710021,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第7期116-123,共8页 Laser & Optoelectronics Progress
基金 陕西省教育厅重点实验室科研计划(18JS053) 陕西省科技厅重点实验室项目(2013SZS14-P01) 西安工业大学基金(XAGDXJJ15001) 西安工业大学光电工程学院基金(15GDYJY03)。
关键词 光栅 近红外吸收 表面等离子激元共振 场增强 金属-硅栅复合微结构 gratings near infrared absorption surface plasmon resonance field enhancement metal silicon gate composite microstructure
  • 相关文献

参考文献7

二级参考文献71

  • 1刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军 2014 物理学报 63 075201.
  • 2M A Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion [M]. Berlin: Springer, 2005.
  • 3M Bosl, C Pelosi. The potential of III-V semiconductors as terrestrial photovoltaic devices [J]. Progress in Photovoltaics~ Research and Applications, 2007, 15(1): 51--68.
  • 4R R King, D C Law, K M Edmondson, et al.. 40~ efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells [J]. Appl Phys Lett, 2007, 90(18): 183516.
  • 5E Garnett, P Yang. Light trapping in silicon nanowire solar cells [J]. Nano Letters, 2010, 10(3): 1082-1087.
  • 6L Hu, G Chen. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications[J]. Nano Letters, 2007, 7 (11): 3249-3252.
  • 7J Kupec, B Witzigmann. Dispersion, wave propagation and efficiency analysis of nanowire solar cells [J].Opt Express, 2009, 17 (12): 10399-10410.
  • 8H J Joyce, Q Gao, J Wong-Leung, et al.. Tailoring GaAs, InAs, and InGaAs nanowires for optoelectronic device applications [J]. 1EEE J Selected Topics in Quantum Electronics, 2011, 17(4) : 766--778.
  • 9Y Kim, H J Joyee, Q Gao, et al.. Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires[J]. Nane Letters, 2006, 6(4): 599--604.
  • 10M Moewe, L C Chuang, S Crankshaw, et al.. Atomically sharp catalyst free wurtzite GaAs/A1GaAs nanoneedles grown on silicon [J]. Appl Phys Lett, 2008, 93(2): 023116.

共引文献31

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部